Guangyan Zheng, Wenli Wu, Zemei Liu, Yuanju Lv, Yongming Luo, Xin Che, Lihong Wang
{"title":"Quercetin nanocrystals prepared using a microfluidic chip with improved in vitro dissolution.","authors":"Guangyan Zheng, Wenli Wu, Zemei Liu, Yuanju Lv, Yongming Luo, Xin Che, Lihong Wang","doi":"10.1080/10837450.2024.2315444","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>In order to improve the dissolution property of quercetin (QCT), the quercetin nanocrystals (QNCs) were prepared in this study.</p><p><strong>Methods: </strong>QNCs were prepared by a 100 μm diameter Y-shape microfluidic channel. Some impact factors affecting the generation of QNCs such as concentration and flow rate were investigated. Furthermore, the fluid mixing in the microfluidic channel was simulated by fluid software.</p><p><strong>Results: </strong>XRPD and DSC analyses indicated that the prepared QNCs were amorphous. Stable QNCs with a particle size of 77.9 ± 3.63 nm and polydispersity index of 0.26 ± 0.02 were obtained. TEM showed that the as-prepared QNCs had a uniform spherical shape with an average particle size of about 100-300 nm. In the dissolution medium without cosolvent Tween -80, the dissolution of QCT was poor, its final accumulated dissolution was only 3.95%, while that of QNCs was 66%.</p><p><strong>Conclusion: </strong>When QCT was changed to QNCs by microfluidic technology, its dissolution property could be obviously improved. Therefore, microfluidic technology as a new method to prepare nanocrystals has a good applying prospect in improving dissolution property for poorly water-soluble drugs.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"143-152"},"PeriodicalIF":2.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2024.2315444","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: In order to improve the dissolution property of quercetin (QCT), the quercetin nanocrystals (QNCs) were prepared in this study.
Methods: QNCs were prepared by a 100 μm diameter Y-shape microfluidic channel. Some impact factors affecting the generation of QNCs such as concentration and flow rate were investigated. Furthermore, the fluid mixing in the microfluidic channel was simulated by fluid software.
Results: XRPD and DSC analyses indicated that the prepared QNCs were amorphous. Stable QNCs with a particle size of 77.9 ± 3.63 nm and polydispersity index of 0.26 ± 0.02 were obtained. TEM showed that the as-prepared QNCs had a uniform spherical shape with an average particle size of about 100-300 nm. In the dissolution medium without cosolvent Tween -80, the dissolution of QCT was poor, its final accumulated dissolution was only 3.95%, while that of QNCs was 66%.
Conclusion: When QCT was changed to QNCs by microfluidic technology, its dissolution property could be obviously improved. Therefore, microfluidic technology as a new method to prepare nanocrystals has a good applying prospect in improving dissolution property for poorly water-soluble drugs.
期刊介绍:
Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology.
Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as:
-Preformulation and pharmaceutical formulation studies
-Pharmaceutical materials selection and characterization
-Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation
-QbD in the form a risk assessment and DoE driven approaches
-Design of dosage forms and drug delivery systems
-Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies
-Drug delivery systems research and quality improvement
-Pharmaceutical regulatory affairs
This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.