Deleting IP6K1 stabilizes neuronal sodium-potassium pumps and suppresses excitability.

IF 3.3 3区 医学 Q2 NEUROSCIENCES
Hongfu Jin, Aili Liu, Alfred C Chin, Chenglai Fu, Hui Shen, Weiwei Cheng
{"title":"Deleting IP6K1 stabilizes neuronal sodium-potassium pumps and suppresses excitability.","authors":"Hongfu Jin, Aili Liu, Alfred C Chin, Chenglai Fu, Hui Shen, Weiwei Cheng","doi":"10.1186/s13041-024-01080-y","DOIUrl":null,"url":null,"abstract":"<p><p>Inositol pyrophosphates are key signaling molecules that regulate diverse neurobiological processes. We previously reported that the inositol pyrophosphate 5-InsP<sub>7</sub>, generated by inositol hexakisphosphate kinase 1 (IP6K1), governs the degradation of Na<sup>+</sup>/K<sup>+</sup>-ATPase (NKA) via an autoinhibitory domain of PI3K p85α. NKA is required for maintaining electrochemical gradients for proper neuronal firing. Here we characterized the electrophysiology of IP6K1 knockout (KO) neurons to further expand upon the functions of IP6K1-regulated control of NKA stability. We found that IP6K1 KO neurons have a lower frequency of action potentials and a specific deepening of the afterhyperpolarization phase. Our results demonstrate that deleting IP6K1 suppresses neuronal excitability, which is consistent with hyperpolarization due to an enrichment of NKA. Given that impaired NKA function contributes to the pathophysiology of various neurological diseases, including hyperexcitability in epilepsy, our findings may have therapeutic implications.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10863101/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13041-024-01080-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Inositol pyrophosphates are key signaling molecules that regulate diverse neurobiological processes. We previously reported that the inositol pyrophosphate 5-InsP7, generated by inositol hexakisphosphate kinase 1 (IP6K1), governs the degradation of Na+/K+-ATPase (NKA) via an autoinhibitory domain of PI3K p85α. NKA is required for maintaining electrochemical gradients for proper neuronal firing. Here we characterized the electrophysiology of IP6K1 knockout (KO) neurons to further expand upon the functions of IP6K1-regulated control of NKA stability. We found that IP6K1 KO neurons have a lower frequency of action potentials and a specific deepening of the afterhyperpolarization phase. Our results demonstrate that deleting IP6K1 suppresses neuronal excitability, which is consistent with hyperpolarization due to an enrichment of NKA. Given that impaired NKA function contributes to the pathophysiology of various neurological diseases, including hyperexcitability in epilepsy, our findings may have therapeutic implications.

删除 IP6K1 可稳定神经元钠钾泵并抑制兴奋性。
肌醇焦磷酸盐是调控多种神经生物学过程的关键信号分子。我们以前曾报道过,由肌醇六磷酸激酶 1(IP6K1)产生的肌醇焦磷酸 5-InsP7 通过 PI3K p85α 的自身抑制结构域调控 Na+/K+-ATP 酶(NKA)的降解。NKA 是维持神经元正常点燃所必需的电化学梯度。在这里,我们描述了 IP6K1 基因敲除(KO)神经元的电生理学特征,以进一步拓展 IP6K1 调控 NKA 稳定性的功能。我们发现,IP6K1 KO 神经元的动作电位频率较低,而且过极化后阶段会特定加深。我们的结果表明,删除 IP6K1 会抑制神经元的兴奋性,这与 NKA 的富集导致的超极化是一致的。鉴于 NKA 功能受损是各种神经系统疾病(包括癫痫的过度兴奋)的病理生理学原因之一,我们的发现可能具有治疗意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Brain
Molecular Brain NEUROSCIENCES-
CiteScore
7.30
自引率
0.00%
发文量
97
审稿时长
>12 weeks
期刊介绍: Molecular Brain is an open access, peer-reviewed journal that considers manuscripts on all aspects of studies on the nervous system at the molecular, cellular, and systems level providing a forum for scientists to communicate their findings. Molecular brain research is a rapidly expanding research field in which integrative approaches at the genetic, molecular, cellular and synaptic levels yield key information about the physiological and pathological brain. These studies involve the use of a wide range of modern techniques in molecular biology, genomics, proteomics, imaging and electrophysiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信