Fatemeh Afraei, Sara Daneshjou, Bahareh Dabirmanesh
{"title":"Synthesis and evaluation of nanosystem containing chondroitinase ABCI based on hydroxyapatite.","authors":"Fatemeh Afraei, Sara Daneshjou, Bahareh Dabirmanesh","doi":"10.1186/s13568-024-01677-5","DOIUrl":null,"url":null,"abstract":"<p><p>The bacterial enzyme chondroitinase ABCI (chABCI), which has been isolated from Proteus Vulgaris, is crucial in the treatment of spinal cord injuries. However, due to its short lifespan, the maintenance and clinical application of this enzyme are very constrained. In this study, the immobilization of this enzyme on hydroxyapatite has been carried out and assessed with the aim of enhancing the characteristics and efficiency of chABCI. Hydroxyapatite particles (HAPs) are a potential candidate for drug-delivery carriers because of their excellent biocompatibility, shape controllability, and high adsorption. The use of the nanometer scale allows efficient access to the enzyme's substrate. It demonstrates important biological application capabilities in this way. Field emission gun-scanning electron microscopy (FEG-SEM), X-ray diffraction (XRD), infrared spectroscopy (FT-IR), in vitro release study, and cytotoxicity test were used to characterize the drug nanosystem's properties. According to the findings, electrostatic bindings was formed between charged groups of the enzyme and hydroxyapatite nanoparticles. The results also demonstrated that immobilized chABCI on hydroxyapatite has beneficial properties, such as more manageable drug release, minimal toxicity and side effects, and a high potential to enhance the efficacy of drug delivery and decrease the need for repeated injections.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":"14 1","pages":"23"},"PeriodicalIF":3.5000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10866842/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMB Express","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13568-024-01677-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The bacterial enzyme chondroitinase ABCI (chABCI), which has been isolated from Proteus Vulgaris, is crucial in the treatment of spinal cord injuries. However, due to its short lifespan, the maintenance and clinical application of this enzyme are very constrained. In this study, the immobilization of this enzyme on hydroxyapatite has been carried out and assessed with the aim of enhancing the characteristics and efficiency of chABCI. Hydroxyapatite particles (HAPs) are a potential candidate for drug-delivery carriers because of their excellent biocompatibility, shape controllability, and high adsorption. The use of the nanometer scale allows efficient access to the enzyme's substrate. It demonstrates important biological application capabilities in this way. Field emission gun-scanning electron microscopy (FEG-SEM), X-ray diffraction (XRD), infrared spectroscopy (FT-IR), in vitro release study, and cytotoxicity test were used to characterize the drug nanosystem's properties. According to the findings, electrostatic bindings was formed between charged groups of the enzyme and hydroxyapatite nanoparticles. The results also demonstrated that immobilized chABCI on hydroxyapatite has beneficial properties, such as more manageable drug release, minimal toxicity and side effects, and a high potential to enhance the efficacy of drug delivery and decrease the need for repeated injections.
期刊介绍:
AMB Express is a high quality journal that brings together research in the area of Applied and Industrial Microbiology with a particular interest in ''White Biotechnology'' and ''Red Biotechnology''. The emphasis is on processes employing microorganisms, eukaryotic cell cultures or enzymes for the biosynthesis, transformation and degradation of compounds. This includes fine and bulk chemicals, polymeric compounds and enzymes or other proteins. Downstream processes are also considered. Integrated processes combining biochemical and chemical processes are also published.