Dissecting host-microbiome interaction effects on phytoplankton microbiome composition and diversity

IF 4.3 2区 生物学 Q2 MICROBIOLOGY
Jinny Wu Yang, Vincent J. Denef
{"title":"Dissecting host-microbiome interaction effects on phytoplankton microbiome composition and diversity","authors":"Jinny Wu Yang,&nbsp;Vincent J. Denef","doi":"10.1111/1462-2920.16585","DOIUrl":null,"url":null,"abstract":"<p>Phytoplankton and their associated microbiomes of heterotrophic bacteria are foundational to primary production, energy transfer, and biogeochemical cycling in aquatic systems. While it is known that these microbiomes are shaped by host-released dissolved organic matter (DOM), the extent to which dynamic phytoplankton-bacteria interactions shape bacterial community assembly remains to be examined. Here, we investigated the effects of two mechanisms in host-microbiome interactions on phytoplankton bacterial microbiome formation: (i) innate host selection and (ii) host-microbiome feedback. For the former, phytoplankton-produced DOM composition is based solely on the host's properties (species or physiological state); for the latter, the presence of the microbiome modifies host DOM production. The microbiome of <i>Chlorella sorokiniana</i> was extracted and exposed to six ratios of the two effects. We found that microbiome composition changed along with the six host-microbiome feedback versus innate host selection ratios, with the highest compositional distance between communities under the strongest and the weakest ratio of the two effects. This indicates that each mechanism selects for different bacterial species. In addition, our findings showed that when both selective forces were applied, it led to a higher community richness, while host-microbiome feedback alone reduces community evenness due to its strong species-specific selection.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16585","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.16585","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Phytoplankton and their associated microbiomes of heterotrophic bacteria are foundational to primary production, energy transfer, and biogeochemical cycling in aquatic systems. While it is known that these microbiomes are shaped by host-released dissolved organic matter (DOM), the extent to which dynamic phytoplankton-bacteria interactions shape bacterial community assembly remains to be examined. Here, we investigated the effects of two mechanisms in host-microbiome interactions on phytoplankton bacterial microbiome formation: (i) innate host selection and (ii) host-microbiome feedback. For the former, phytoplankton-produced DOM composition is based solely on the host's properties (species or physiological state); for the latter, the presence of the microbiome modifies host DOM production. The microbiome of Chlorella sorokiniana was extracted and exposed to six ratios of the two effects. We found that microbiome composition changed along with the six host-microbiome feedback versus innate host selection ratios, with the highest compositional distance between communities under the strongest and the weakest ratio of the two effects. This indicates that each mechanism selects for different bacterial species. In addition, our findings showed that when both selective forces were applied, it led to a higher community richness, while host-microbiome feedback alone reduces community evenness due to its strong species-specific selection.

Abstract Image

Abstract Image

剖析宿主-微生物组相互作用对浮游植物微生物组组成和多样性的影响
浮游植物及其相关的异养细菌微生物群是水生系统中初级生产、能量传递和生物地球化学循环的基础。众所周知,这些微生物群落是由宿主释放的溶解有机物(DOM)形成的,但浮游植物与细菌之间的动态相互作用在多大程度上影响了细菌群落的组合还有待研究。在此,我们研究了宿主-微生物组相互作用的两种机制对浮游植物细菌微生物组形成的影响:(i)先天宿主选择和(ii)宿主-微生物组反馈。对于前者,浮游植物产生的 DOM 组成完全基于宿主的特性(物种或生理状态);对于后者,微生物组的存在改变了宿主 DOM 的产生。我们提取了小球藻(Chlorella sorokiniana)的微生物组,并将其暴露于这两种效应的六种比例中。我们发现,微生物组的组成随着六种宿主-微生物组反馈与先天宿主选择比率的变化而变化,在两种效应的最强和最弱比率下,群落之间的组成距离最大。这表明每种机制都会选择不同的细菌物种。此外,我们的研究结果表明,当两种选择力同时作用时,群落的丰富度较高,而单独的宿主-微生物组反馈则由于其强烈的物种特异性选择而降低了群落的均匀度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental microbiology
Environmental microbiology 环境科学-微生物学
CiteScore
9.90
自引率
3.90%
发文量
427
审稿时长
2.3 months
期刊介绍: Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following: the structure, activities and communal behaviour of microbial communities microbial community genetics and evolutionary processes microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors microbes in the tree of life, microbial diversification and evolution population biology and clonal structure microbial metabolic and structural diversity microbial physiology, growth and survival microbes and surfaces, adhesion and biofouling responses to environmental signals and stress factors modelling and theory development pollution microbiology extremophiles and life in extreme and unusual little-explored habitats element cycles and biogeochemical processes, primary and secondary production microbes in a changing world, microbially-influenced global changes evolution and diversity of archaeal and bacterial viruses new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信