A Novel BST@TPU Membrane with Superior UV Durability for Highly Efficient Daytime Radiative Cooling

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xin Li, Lorenzo Pattelli, Zhenmin Ding, Mingjun Chen, Tao Zhao, Yao Li, Hongbo Xu, Lei Pan, Jiupeng Zhao
{"title":"A Novel BST@TPU Membrane with Superior UV Durability for Highly Efficient Daytime Radiative Cooling","authors":"Xin Li,&nbsp;Lorenzo Pattelli,&nbsp;Zhenmin Ding,&nbsp;Mingjun Chen,&nbsp;Tao Zhao,&nbsp;Yao Li,&nbsp;Hongbo Xu,&nbsp;Lei Pan,&nbsp;Jiupeng Zhao","doi":"10.1002/adfm.202315315","DOIUrl":null,"url":null,"abstract":"<p>Passive radiative cooling technologies play an integral role in advancing sustainable development. While the potential of polymer-based radiative cooling materials is increasingly recognized, they often degrade under prolonged ultraviolet (UV) radiation exposure, which undermines both their mechanical and radiative cooling performance. To address this challenge, a coaxial electrospinning method to prepare a BST@TPU membrane, with a core layer of strontium barium titanate nanorods (BST NRs) and a shell layer of thermoplastic polyurethane (TPU) is employed. Capitalizing on the UV absorption and free radical adsorption properties of BST NRs, the UV stability of the TPU membrane is significantly increased. Additionally, the inclusion of high refractive index BST NRs compensates for the decrease in reflectivity caused by their UV absorption. After 216 h of continuous 0.7 kW m<sup>−2</sup> UV irradiation, the BST@TPU membrane, which initially exhibits a reflectance of 97.2%, demonstrated a modest decline to 92.1%. Its net radiative cooling power maintains 85.78 W m<sup>−2</sup> from the initial of 125.21 W m<sup>−2</sup>, extending the useful lifetime of the TPU membrane threefold. This innovation extends promise for enhancing the efficiency and durability of radiative cooling materials, contributing to sustainable cooling solutions across various applications.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"34 23","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202315315","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Passive radiative cooling technologies play an integral role in advancing sustainable development. While the potential of polymer-based radiative cooling materials is increasingly recognized, they often degrade under prolonged ultraviolet (UV) radiation exposure, which undermines both their mechanical and radiative cooling performance. To address this challenge, a coaxial electrospinning method to prepare a BST@TPU membrane, with a core layer of strontium barium titanate nanorods (BST NRs) and a shell layer of thermoplastic polyurethane (TPU) is employed. Capitalizing on the UV absorption and free radical adsorption properties of BST NRs, the UV stability of the TPU membrane is significantly increased. Additionally, the inclusion of high refractive index BST NRs compensates for the decrease in reflectivity caused by their UV absorption. After 216 h of continuous 0.7 kW m−2 UV irradiation, the BST@TPU membrane, which initially exhibits a reflectance of 97.2%, demonstrated a modest decline to 92.1%. Its net radiative cooling power maintains 85.78 W m−2 from the initial of 125.21 W m−2, extending the useful lifetime of the TPU membrane threefold. This innovation extends promise for enhancing the efficiency and durability of radiative cooling materials, contributing to sustainable cooling solutions across various applications.

Abstract Image

Abstract Image

新型 BST@TPU 膜具有优异的紫外线耐久性,可实现高效的日间辐射制冷
被动辐射冷却技术在推动可持续发展方面发挥着不可或缺的作用。虽然基于聚合物的辐射冷却材料的潜力日益得到认可,但它们往往会在长期紫外线(UV)辐射下降解,从而影响其机械和辐射冷却性能。为了应对这一挑战,我们采用了一种同轴电纺丝方法来制备 BST@TPU 膜,其核心层为钛酸锶钡纳米棒(BST NRs),外壳层为热塑性聚氨酯(TPU)。利用 BST NRs 的紫外线吸收和自由基吸附特性,TPU 膜的紫外线稳定性显著提高。此外,高折射率 BST NRs 的加入弥补了其紫外线吸收导致的反射率下降。在 0.7 kW m-2 紫外线连续照射 216 小时后,BST@TPU 膜的反射率从最初的 97.2% 下降到 92.1%。其净辐射冷却功率从最初的 125.21 W m-2 维持在 85.78 W m-2,将热塑性聚氨酯膜的使用寿命延长了三倍。这项创新有望提高辐射冷却材料的效率和耐用性,为各种应用领域的可持续冷却解决方案做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信