Electron Penetration Effect of Ni Single Atom Boosting CO2 to CO in PH-Universal Electrolytes

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Fangyuan Wang, Xingqi Han, Daoxiong Wu, Zhitong Wang, Xiaoqian Xiong, Jing Li, Xiaohong Gao, Guan Wang, Li Huo, Yingjie Hua, Chongtai Wang, Huan Wen, Qi Chen, Xinlong Tian, Peilin Deng
{"title":"Electron Penetration Effect of Ni Single Atom Boosting CO2 to CO in PH-Universal Electrolytes","authors":"Fangyuan Wang,&nbsp;Xingqi Han,&nbsp;Daoxiong Wu,&nbsp;Zhitong Wang,&nbsp;Xiaoqian Xiong,&nbsp;Jing Li,&nbsp;Xiaohong Gao,&nbsp;Guan Wang,&nbsp;Li Huo,&nbsp;Yingjie Hua,&nbsp;Chongtai Wang,&nbsp;Huan Wen,&nbsp;Qi Chen,&nbsp;Xinlong Tian,&nbsp;Peilin Deng","doi":"10.1002/adfm.202314453","DOIUrl":null,"url":null,"abstract":"<p>Electrocatalytic CO<sub>2</sub> reduction (ECR) powered by renewable electricity has attracted of wide attention because of its advantages to produce high-value-added chemicals and fuels. Additionally, ECR played a crucial role in addressing the challenge of excessive fossil fuel consumption caused by global warming. Herein, a unique armor structure with Ni nanoparticles coated by a carbon shell containing Ni─N─C (Ni─NP@Ni─SA) for industrial ECR to CO in pH-universal electrolytes is designed. Ni─NP@Ni─SA catalyst exhibits ≈100% CO Faradaic efficiency, and CO partial current density can reach 500, 361, and 615 mA cm<sup>−2</sup> in strong alkaline (pH 14), neutral (pH 7.2) and strong acidic (pH 1) electrolytes, respectively. Moreover, Ni─NP@Ni─SA can drive the rechargeable Zn-CO<sub>2</sub> battery with a high power density of 3.45 mW cm<sup>−2</sup>, and outstanding stability over 36 h. The structural characterizations and theoretical calculation together present that the electron penetration effect of Ni─NP@Ni─SA can strengthen the electronic enrichment state of Ni single atom, which facilitates the reaction kinetics of ECR by decreasing the formation energy barrier of key intermediate <sup>*</sup>COOH. This work pioneers a new design strategy to enhance the activity of single-atom catalysts and seek high-efficiency electrocatalysts for ECR in pH-universal electrolytes.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"34 23","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202314453","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalytic CO2 reduction (ECR) powered by renewable electricity has attracted of wide attention because of its advantages to produce high-value-added chemicals and fuels. Additionally, ECR played a crucial role in addressing the challenge of excessive fossil fuel consumption caused by global warming. Herein, a unique armor structure with Ni nanoparticles coated by a carbon shell containing Ni─N─C (Ni─NP@Ni─SA) for industrial ECR to CO in pH-universal electrolytes is designed. Ni─NP@Ni─SA catalyst exhibits ≈100% CO Faradaic efficiency, and CO partial current density can reach 500, 361, and 615 mA cm−2 in strong alkaline (pH 14), neutral (pH 7.2) and strong acidic (pH 1) electrolytes, respectively. Moreover, Ni─NP@Ni─SA can drive the rechargeable Zn-CO2 battery with a high power density of 3.45 mW cm−2, and outstanding stability over 36 h. The structural characterizations and theoretical calculation together present that the electron penetration effect of Ni─NP@Ni─SA can strengthen the electronic enrichment state of Ni single atom, which facilitates the reaction kinetics of ECR by decreasing the formation energy barrier of key intermediate *COOH. This work pioneers a new design strategy to enhance the activity of single-atom catalysts and seek high-efficiency electrocatalysts for ECR in pH-universal electrolytes.

Abstract Image

Abstract Image

Abstract Image

镍单原子在 PH 通用电解质中将 CO2 提升为 CO 的电子穿透效应
以可再生电力为动力的电催化二氧化碳还原(ECR)因其在生产高附加值化学品和燃料方面的优势而受到广泛关注。此外,ECR 在应对全球变暖导致化石燃料过度消耗的挑战方面也发挥着至关重要的作用。本文设计了一种独特的铠装结构,即在含有 Ni─N─C (Ni─NP@Ni─SA)的碳壳上包覆 Ni 纳米颗粒,用于在 pH 值通用的电解质中对 CO 进行工业 ECR。在强碱性(pH 14)、中性(pH 7.2)和强酸性(pH 1)电解质中,Ni─NP@Ni─SA 催化剂的 CO 法拉第效率≈100%,CO 部分电流密度分别达到 500、361 和 615 mA cm-2。此外,Ni─NP@Ni─SA 还能以 3.45 mW cm-2 的高功率密度驱动可充电 Zn-CO2 电池,并在 36 h 内保持出色的稳定性。结构表征和理论计算共同表明,Ni─NP@Ni─SA 的电子穿透效应可强化 Ni 单原子的电子富集状态,从而通过降低关键中间体 *COOH 的形成能垒促进 ECR 反应动力学。这项工作开创了一种新的设计策略,以增强单原子催化剂的活性,并寻求在pH值通用电解质中进行高效ECR的电催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信