{"title":"Maximizing Surface Single-Ni Sites on Hollow Carbon Sphere for Efficient CO2 Electroreduction","authors":"Dan Ping, Yi-Chen Feng, Shi-De Wu*, Feng Yi, Si-Yuan Cheng, Shi-Wen Wang, Jun-Feng Tian, Heng Wang, Xu-Zhao Yang, Dong-Jie Guo and Shao-Ming Fang*, ","doi":"10.1021/acssuschemeng.3c06494","DOIUrl":null,"url":null,"abstract":"<p >Single-atom catalysts show great application potential due to their high catalytic efficiency but suffer from insufficient active site density and utilization. Herein, a robust single-atomic Ni catalyst anchored on porous hollow carbon spheres (Ni–N–HCS) was successfully synthesized via a pyrolysis approach employing SiO<sub>2</sub>-templated HCS, dicyandiamide, and Ni(CH<sub>3</sub>COO)<sub>2</sub>·4H<sub>2</sub>O as raw materials. Profiting from the abundant (3.47 wt %) and accessible single-Ni active sites and the robust hollow carbon architecture, this catalyst showed superior performance for electrochemical CO<sub>2</sub> reduction reaction in an H-type cell. A prominent Faradaic efficiency for CO (95.04%) can be achieved at a −0.70 V vs a reversible hydrogen electrode (RHE) and the value can even be kept at >80% over a broad voltage range (−0.62 to −0.87 V vs RHE) with a desirable CO current density (10.88 mA·cm<sup>–2</sup>). In addition, the FE<sub>CO</sub> was kept almost unchanged during continuous electrolysis for 40 h. Significantly, Ni–N–HCS also exhibits an excellent CO selectivity of >95% over the whole investigated potential window in the flow cell. We believe this work will provide a new possibility to build single-atom catalysts with maximized utilization for improving electrochemical performance.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.3c06494","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Single-atom catalysts show great application potential due to their high catalytic efficiency but suffer from insufficient active site density and utilization. Herein, a robust single-atomic Ni catalyst anchored on porous hollow carbon spheres (Ni–N–HCS) was successfully synthesized via a pyrolysis approach employing SiO2-templated HCS, dicyandiamide, and Ni(CH3COO)2·4H2O as raw materials. Profiting from the abundant (3.47 wt %) and accessible single-Ni active sites and the robust hollow carbon architecture, this catalyst showed superior performance for electrochemical CO2 reduction reaction in an H-type cell. A prominent Faradaic efficiency for CO (95.04%) can be achieved at a −0.70 V vs a reversible hydrogen electrode (RHE) and the value can even be kept at >80% over a broad voltage range (−0.62 to −0.87 V vs RHE) with a desirable CO current density (10.88 mA·cm–2). In addition, the FECO was kept almost unchanged during continuous electrolysis for 40 h. Significantly, Ni–N–HCS also exhibits an excellent CO selectivity of >95% over the whole investigated potential window in the flow cell. We believe this work will provide a new possibility to build single-atom catalysts with maximized utilization for improving electrochemical performance.
期刊介绍:
ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment.
The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.