Central parks as air quality oases in the tropical Andean city of Quito

IF 3.8 Q2 ENVIRONMENTAL SCIENCES
R. Zalakeviciute , S. Bonilla Bedoya , D. Mejia Coronel , M. Bastidas , A. Buenano , A. Diaz-Marquez
{"title":"Central parks as air quality oases in the tropical Andean city of Quito","authors":"R. Zalakeviciute ,&nbsp;S. Bonilla Bedoya ,&nbsp;D. Mejia Coronel ,&nbsp;M. Bastidas ,&nbsp;A. Buenano ,&nbsp;A. Diaz-Marquez","doi":"10.1016/j.aeaoa.2024.100239","DOIUrl":null,"url":null,"abstract":"<div><p>Urban ecosystem is an intricate agglomeration of human, fauna and flora populations coexisting in natural and artificial environments. As a city develops and expands over time; it may become unbalanced, affecting the quality of ecosystem and urban services and leading to environmental and health problems. Fine particulate matter (particulate matter with aerodynamic diameter ≤2.5 μm - PM<sub>2.5</sub>) is the air pollutant posing the greatest risk to human health. Quito, the capital city of Ecuador, exhibits a high occurrence of exposure to unhealthy levels of PM<sub>2.5</sub> due to a combination of natural and social variables. This study focused on three central parks of this high elevation city, investigating the spatial distribution of PM<sub>2.5</sub> concentrations. The particle pollution was then modeled using Normalized Difference Vegetation Index (NDVI). Hazardous instantaneous levels of PM<sub>2.5</sub> were consistently found on the edges of the parks along busy avenues, which are also the most frequented areas. This raises concerns about both short- and long-term exposures to toxic traffic pollution in recreational areas within urban dwellings in the global south. The NDVI model successfully predicted the spatial concentrations of PM<sub>2.5</sub> in a smaller urban park, suggesting its potential application in other cities. However, further research is required to validate its effectiveness.</p></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":"21 ","pages":"Article 100239"},"PeriodicalIF":3.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590162124000066/pdfft?md5=b831268b84d8254d4555b1b834e85d18&pid=1-s2.0-S2590162124000066-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590162124000066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Urban ecosystem is an intricate agglomeration of human, fauna and flora populations coexisting in natural and artificial environments. As a city develops and expands over time; it may become unbalanced, affecting the quality of ecosystem and urban services and leading to environmental and health problems. Fine particulate matter (particulate matter with aerodynamic diameter ≤2.5 μm - PM2.5) is the air pollutant posing the greatest risk to human health. Quito, the capital city of Ecuador, exhibits a high occurrence of exposure to unhealthy levels of PM2.5 due to a combination of natural and social variables. This study focused on three central parks of this high elevation city, investigating the spatial distribution of PM2.5 concentrations. The particle pollution was then modeled using Normalized Difference Vegetation Index (NDVI). Hazardous instantaneous levels of PM2.5 were consistently found on the edges of the parks along busy avenues, which are also the most frequented areas. This raises concerns about both short- and long-term exposures to toxic traffic pollution in recreational areas within urban dwellings in the global south. The NDVI model successfully predicted the spatial concentrations of PM2.5 in a smaller urban park, suggesting its potential application in other cities. However, further research is required to validate its effectiveness.

中央公园是热带安第斯城市基多的空气质量绿洲
城市生态系统是人类、动物和植物群落在自然和人工环境中共存的复杂集合体。随着时间的推移,城市在发展和扩张的过程中可能会失去平衡,影响生态系统和城市服务的质量,导致环境和健康问题。细颗粒物(空气动力直径≤2.5 μm 的颗粒物--PM2.5)是对人类健康危害最大的空气污染物。基多是厄瓜多尔的首都,在自然和社会变量的共同作用下,PM2.5 暴露于不健康水平的发生率很高。这项研究重点关注这座高海拔城市的三个中央公园,调查 PM2.5 浓度的空间分布。然后利用归一化植被指数(NDVI)对颗粒物污染进行建模。PM2.5的有害瞬时浓度水平始终出现在繁华大道沿线的公园边缘,这些地方也是人流最频繁的区域。这引起了人们对全球南部城市居民休闲区短期和长期暴露于有毒交通污染的担忧。NDVI 模型成功地预测了一个较小城市公园中 PM2.5 的空间浓度,表明它有可能应用于其他城市。不过,还需要进一步的研究来验证其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric Environment: X
Atmospheric Environment: X Environmental Science-Environmental Science (all)
CiteScore
8.00
自引率
0.00%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信