Electrical and colloidal properties of hydrogenated nanodiamonds: Effects of structure, composition and size

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Stepan Stehlik , Ondrej Szabo , Ekaterina Shagieva , Daria Miliaieva , Alexander Kromka , Zuzana Nemeckova , Jiri Henych , Jan Kozempel , Evgeny Ekimov , Bohuslav Rezek
{"title":"Electrical and colloidal properties of hydrogenated nanodiamonds: Effects of structure, composition and size","authors":"Stepan Stehlik ,&nbsp;Ondrej Szabo ,&nbsp;Ekaterina Shagieva ,&nbsp;Daria Miliaieva ,&nbsp;Alexander Kromka ,&nbsp;Zuzana Nemeckova ,&nbsp;Jiri Henych ,&nbsp;Jan Kozempel ,&nbsp;Evgeny Ekimov ,&nbsp;Bohuslav Rezek","doi":"10.1016/j.cartre.2024.100327","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrogenated nanodiamonds (NDs) get increasing attention as promising nanomaterial in biology as well as optoelectronics. This study shows how the ND synthesis process and ND size are reflected in their different colloidal/hydration and electronic properties. We employ three different ND types: detonation ND (DND), top-down high-pressure high-temperature ND (TD_HPHT ND) prepared by milling of HPHT monocrystals, and bottom-up high-pressure high-temperature ND (BU_HPHT ND) prepared by HPHT synthesis from chloroadamantane. Zeta potential measurements and Fourier transform infrared spectroscopy analysis (FTIR) reveal the best colloidal stability in neutral to basic pH and the strongest affinity to water for DND. Electrical and FTIR measurements connected with an annealing treatment show a steep increase of electrical conductivity in BU_HPHT ND above 2 nm and reveal different contribution of transfer doping in BU_HPHT ND and TD_HPHT ND despite similar conductivity values (≈ 10<sup>−5</sup> S.cm<sup>−1</sup>). We also confirm the correlation of the ND conductivity with IR transmission at the phonon frequency of the diamond (1330 cm<sup>−1</sup>). Neutron irradiation of a TD_HPHT ND corroborates the crucial role of structural defects in the above colloidal and electronic properties of hydrogenated nanodiamonds.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000087/pdfft?md5=b8e605f7c9d415f6a5bd06b6fe38c442&pid=1-s2.0-S2667056924000087-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056924000087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogenated nanodiamonds (NDs) get increasing attention as promising nanomaterial in biology as well as optoelectronics. This study shows how the ND synthesis process and ND size are reflected in their different colloidal/hydration and electronic properties. We employ three different ND types: detonation ND (DND), top-down high-pressure high-temperature ND (TD_HPHT ND) prepared by milling of HPHT monocrystals, and bottom-up high-pressure high-temperature ND (BU_HPHT ND) prepared by HPHT synthesis from chloroadamantane. Zeta potential measurements and Fourier transform infrared spectroscopy analysis (FTIR) reveal the best colloidal stability in neutral to basic pH and the strongest affinity to water for DND. Electrical and FTIR measurements connected with an annealing treatment show a steep increase of electrical conductivity in BU_HPHT ND above 2 nm and reveal different contribution of transfer doping in BU_HPHT ND and TD_HPHT ND despite similar conductivity values (≈ 10−5 S.cm−1). We also confirm the correlation of the ND conductivity with IR transmission at the phonon frequency of the diamond (1330 cm−1). Neutron irradiation of a TD_HPHT ND corroborates the crucial role of structural defects in the above colloidal and electronic properties of hydrogenated nanodiamonds.

Abstract Image

氢化纳米金刚石的电学和胶体特性:结构、成分和尺寸的影响
氢化纳米金刚石(NDs)作为一种在生物学和光电子学领域大有可为的纳米材料,受到越来越多的关注。本研究展示了 ND 合成过程和 ND 尺寸如何反映其不同的胶体/水合和电子特性。我们采用了三种不同类型的 ND:引爆 ND(DND)、通过研磨 HPHT 单晶制备的自上而下高压高温 ND(TD_HPHT ND)和通过 HPHT 合成氯金刚烷制备的自下而上高压高温 ND(BU_HPHT ND)。Zeta 电位测量和傅立叶变换红外光谱分析(FTIR)显示,DND 在中性至碱性 pH 值条件下的胶体稳定性最好,与水的亲和力最强。与退火处理相关的电学和傅立叶变换红外光谱测量表明,BU_HPHT ND 的电导率在 2 nm 以上会急剧上升,并揭示了 BU_HPHT ND 和 TD_HPHT ND 中转移掺杂的不同贡献,尽管电导率值相似(≈ 10-5 S.cm-1)。我们还证实了 ND 电导率与金刚石声子频率(1330 cm-1)的红外透射率之间的相关性。对 TD_HPHT ND 进行中子辐照证实了结构缺陷在氢化纳米金刚石的上述胶体和电子特性中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信