CRISPR/Cas Technology: The Unique Synthetic Biology Genome-Editing Tool Shifting the Paradigm in Viral Diagnostics, Defense, and Therapeutics.

IF 12.8 1区 工程技术 Q1 ENGINEERING, BIOMEDICAL
Lang Zhou, Aleksandr L Simonian
{"title":"CRISPR/Cas Technology: The Unique Synthetic Biology Genome-Editing Tool Shifting the Paradigm in Viral Diagnostics, Defense, and Therapeutics.","authors":"Lang Zhou, Aleksandr L Simonian","doi":"10.1146/annurev-bioeng-081723-013033","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of the COVID-19 pandemic has starkly exposed our significantly limited ability to promptly identify and respond to emergent biological threats. Consequently, there is an urgent need to advance biotechnological methods for addressing both known and unforeseen biological hazards. Recently, the CRISPR/Cas system has revolutionized genetic engineering, enabling precise and efficient synthetic biology applications. Therefore, this review aims to provide a comprehensive introduction to the fundamental principles underlying the CRISPR/Cas system and assess the advantages and limitations of various CRISPR/Cas-based techniques applicable to the detection of, defense against, and treatment of viral infections. These techniques include viral diagnostics, the development of antiviral vaccines, B cell engineering for antibody production, viral activation/interference, and epigenetic modifications. Furthermore, this review delves into the challenges and bioethical considerations associated with use of the CRISPR/Cas system. With the continuous evolution of technology, the CRISPR/Cas system holds considerable promise for addressing both existing and unforeseen biological threats.</p>","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":" ","pages":"247-272"},"PeriodicalIF":12.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-bioeng-081723-013033","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of the COVID-19 pandemic has starkly exposed our significantly limited ability to promptly identify and respond to emergent biological threats. Consequently, there is an urgent need to advance biotechnological methods for addressing both known and unforeseen biological hazards. Recently, the CRISPR/Cas system has revolutionized genetic engineering, enabling precise and efficient synthetic biology applications. Therefore, this review aims to provide a comprehensive introduction to the fundamental principles underlying the CRISPR/Cas system and assess the advantages and limitations of various CRISPR/Cas-based techniques applicable to the detection of, defense against, and treatment of viral infections. These techniques include viral diagnostics, the development of antiviral vaccines, B cell engineering for antibody production, viral activation/interference, and epigenetic modifications. Furthermore, this review delves into the challenges and bioethical considerations associated with use of the CRISPR/Cas system. With the continuous evolution of technology, the CRISPR/Cas system holds considerable promise for addressing both existing and unforeseen biological threats.

CRISPR/Cas 技术:独特的合成生物学基因组编辑工具,改变了病毒诊断、防御和治疗的范式。
COVID-19 大流行病的出现清楚地暴露了我们迅速识别和应对突发生物威胁的能力非常有限。因此,我们迫切需要推进生物技术方法,以应对已知和不可预见的生物危害。最近,CRISPR/Cas 系统彻底改变了基因工程,实现了精确、高效的合成生物学应用。因此,本综述旨在全面介绍 CRISPR/Cas 系统的基本原理,并评估基于 CRISPR/Cas 的各种技术在检测、防御和治疗病毒感染方面的优势和局限性。这些技术包括病毒诊断、抗病毒疫苗的开发、产生抗体的 B 细胞工程、病毒激活/干扰和表观遗传修饰。此外,本综述还深入探讨了与使用 CRISPR/Cas 系统相关的挑战和生物伦理考虑因素。随着技术的不断发展,CRISPR/Cas 系统在应对现有和不可预见的生物威胁方面大有可为。生物医学工程年度综述》第 26 卷的最终在线出版日期预计为 2024 年 5 月。修订后的预计日期请参见 http://www.annualreviews.org/page/journal/pubdates。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annual Review of Biomedical Engineering
Annual Review of Biomedical Engineering 工程技术-工程:生物医学
CiteScore
18.80
自引率
0.00%
发文量
14
期刊介绍: Since 1999, the Annual Review of Biomedical Engineering has been capturing major advancements in the expansive realm of biomedical engineering. Encompassing biomechanics, biomaterials, computational genomics and proteomics, tissue engineering, biomonitoring, healthcare engineering, drug delivery, bioelectrical engineering, biochemical engineering, and biomedical imaging, the journal remains a vital resource. The current volume has transitioned from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信