Olivia Molinar-Inglis, LeShawndra N Price, Andrea L DiCarlo
{"title":"Highlighting the NIAID Radiation and Nuclear Countermeasures Program's Commitment to Training and Diversifying the Radiation Workforce.","authors":"Olivia Molinar-Inglis, LeShawndra N Price, Andrea L DiCarlo","doi":"10.1667/RADE-23-00207.1","DOIUrl":null,"url":null,"abstract":"<p><p>Developing and maintaining a robust and diverse scientific workforce is crucial to advance knowledge, drive innovation, and tackle societal issues that impact the economy and human health. The shortage of trained professionals in radiation and nuclear sciences derives from many factors, such as scarcity of specialized coursework, programming, professional development, and experiential learning at educational institutions, which significantly disrupt the training pipeline. Other challenges include small numbers of faculty and educators with specialized radiation/nuclear expertise that are continually overextended professionally and scientifically, with the burden of training falling on this subset of individuals. Even more alarming is the recent loss of radiobiologists due to increased retirements and deaths, leaving the radiobiology community with a void of mentors and knowledge. Lastly, inconsistency in acquiring stable grant funding to recruit and retain scientists is a major hurdle to training the next generation of radiation and nuclear scientists. Recommendations from the scientific community and the National Academies of Sciences, Engineering, and Medicine describe the need to bolster educational resources and provide more hands-on training experiences. Of equal importance was the suggestion that funding agencies provide more opportunities for training and tracking the radiation workforce. The Radiation and Nuclear Countermeasures Program (RNCP), and the Office of Research Training and Special Programs (ORTSP), both within the National Institute of Allergy and Infectious Diseases (NIAID) are committed to helping to develop and sustain the radiation research workforce. This commentary illustrates the importance of addressing radiation workforce development and outlines steps that the RNCP is taking to help mitigate the issue. In addition, the role for Diversity, Equity, Inclusion, and Accessibility (DEIA) in helping to increase the number of students trained in the radiation sciences is discussed, and the NIH's DEIA priorities and RNCP efforts to improve DEIA in the research community are highlighted. One of the main goals of this commentary is to provide awareness of available educational (i.e., development of a radiation biologist eBook) and funding resources. A summary of available awards targeting early- to mid-stage investigators and diversity candidates is given, and it is hoped that this list, although not exhaustive and not specific for all focus areas in radiation (e.g., cancer research), will encourage more radiation biologists to explore and apply to these under-utilized opportunities.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11060511/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1667/RADE-23-00207.1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Developing and maintaining a robust and diverse scientific workforce is crucial to advance knowledge, drive innovation, and tackle societal issues that impact the economy and human health. The shortage of trained professionals in radiation and nuclear sciences derives from many factors, such as scarcity of specialized coursework, programming, professional development, and experiential learning at educational institutions, which significantly disrupt the training pipeline. Other challenges include small numbers of faculty and educators with specialized radiation/nuclear expertise that are continually overextended professionally and scientifically, with the burden of training falling on this subset of individuals. Even more alarming is the recent loss of radiobiologists due to increased retirements and deaths, leaving the radiobiology community with a void of mentors and knowledge. Lastly, inconsistency in acquiring stable grant funding to recruit and retain scientists is a major hurdle to training the next generation of radiation and nuclear scientists. Recommendations from the scientific community and the National Academies of Sciences, Engineering, and Medicine describe the need to bolster educational resources and provide more hands-on training experiences. Of equal importance was the suggestion that funding agencies provide more opportunities for training and tracking the radiation workforce. The Radiation and Nuclear Countermeasures Program (RNCP), and the Office of Research Training and Special Programs (ORTSP), both within the National Institute of Allergy and Infectious Diseases (NIAID) are committed to helping to develop and sustain the radiation research workforce. This commentary illustrates the importance of addressing radiation workforce development and outlines steps that the RNCP is taking to help mitigate the issue. In addition, the role for Diversity, Equity, Inclusion, and Accessibility (DEIA) in helping to increase the number of students trained in the radiation sciences is discussed, and the NIH's DEIA priorities and RNCP efforts to improve DEIA in the research community are highlighted. One of the main goals of this commentary is to provide awareness of available educational (i.e., development of a radiation biologist eBook) and funding resources. A summary of available awards targeting early- to mid-stage investigators and diversity candidates is given, and it is hoped that this list, although not exhaustive and not specific for all focus areas in radiation (e.g., cancer research), will encourage more radiation biologists to explore and apply to these under-utilized opportunities.
期刊介绍:
Radiation Research publishes original articles dealing with radiation effects and related subjects in the areas of physics, chemistry, biology
and medicine, including epidemiology and translational research. The term radiation is used in its broadest sense and includes specifically
ionizing radiation and ultraviolet, visible and infrared light as well as microwaves, ultrasound and heat. Effects may be physical, chemical or
biological. Related subjects include (but are not limited to) dosimetry methods and instrumentation, isotope techniques and studies with
chemical agents contributing to the understanding of radiation effects.