Efficient generation of human cerebral organoids directly from adherent cultures of pluripotent stem cells.

IF 6.7 1区 工程技术 Q1 CELL & TISSUE ENGINEERING
Journal of Tissue Engineering Pub Date : 2024-02-09 eCollection Date: 2024-01-01 DOI:10.1177/20417314231226027
Rosa González-Sastre, Raquel Coronel, Adela Bernabeu-Zornoza, Patricia Mateos-Martínez, Andreea Rosca, Victoria López-Alonso, Isabel Liste
{"title":"Efficient generation of human cerebral organoids directly from adherent cultures of pluripotent stem cells.","authors":"Rosa González-Sastre, Raquel Coronel, Adela Bernabeu-Zornoza, Patricia Mateos-Martínez, Andreea Rosca, Victoria López-Alonso, Isabel Liste","doi":"10.1177/20417314231226027","DOIUrl":null,"url":null,"abstract":"<p><p>Human cerebral organoids (hCOs) offer the possibility of deepening the knowledge of human brain development, as well as the pathologies that affect it. The method developed here describes the efficient generation of hCOs by going directly from two-dimensional (2D) pluripotent stem cell (PSC) cultures to three-dimensional (3D) neuroepithelial tissue, avoiding dissociation and aggregation steps. This has been achieved by subjecting 2D cultures, from the beginning of the neural induction step, to dual-SMAD inhibition in combination with CHIR99021. This is a simple and reproducible protocol in which the hCOs generated develop properly presenting proliferative ventricular zones (VZs) formed by neural precursor and radial glia (RG) that differentiate to give rise to mature neurons and glial cells. The hCOs present additional cell types such as oligodendrocyte precursors, astrocytes, microglia-like cells, and endothelial-like cells. This new approach could help to overcome some of the existing limitations in the field of organoid biotechnology, facilitating its execution in any laboratory setting.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"15 ","pages":"20417314231226027"},"PeriodicalIF":6.7000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10858658/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/20417314231226027","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Human cerebral organoids (hCOs) offer the possibility of deepening the knowledge of human brain development, as well as the pathologies that affect it. The method developed here describes the efficient generation of hCOs by going directly from two-dimensional (2D) pluripotent stem cell (PSC) cultures to three-dimensional (3D) neuroepithelial tissue, avoiding dissociation and aggregation steps. This has been achieved by subjecting 2D cultures, from the beginning of the neural induction step, to dual-SMAD inhibition in combination with CHIR99021. This is a simple and reproducible protocol in which the hCOs generated develop properly presenting proliferative ventricular zones (VZs) formed by neural precursor and radial glia (RG) that differentiate to give rise to mature neurons and glial cells. The hCOs present additional cell types such as oligodendrocyte precursors, astrocytes, microglia-like cells, and endothelial-like cells. This new approach could help to overcome some of the existing limitations in the field of organoid biotechnology, facilitating its execution in any laboratory setting.

直接从多能干细胞的粘附培养物中高效生成人脑器官组织。
人脑器官组织(hCOs)为加深对人类大脑发育以及影响大脑发育的病理学的了解提供了可能。本文介绍的方法是通过直接从二维(2D)多能干细胞(PSC)培养物到三维(3D)神经上皮组织,避免解离和聚集步骤,高效生成 hCOs。从神经诱导步骤开始,就对二维培养物进行CHIR99021和SMAD双重抑制,从而实现了这一目标。这是一种简单且可重复的方案,在该方案中,生成的 hCOs 能正常发育,呈现由神经前体和放射状胶质细胞(RG)形成的增殖室区(VZ),这些细胞分化出成熟的神经元和胶质细胞。hCOs 还具有其他细胞类型,如少突胶质细胞前体、星形胶质细胞、小胶质细胞样细胞和内皮样细胞。这种新方法有助于克服类器官生物技术领域现有的一些局限性,方便在任何实验室环境中实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Tissue Engineering
Journal of Tissue Engineering Engineering-Biomedical Engineering
CiteScore
11.60
自引率
4.90%
发文量
52
审稿时长
12 weeks
期刊介绍: The Journal of Tissue Engineering (JTE) is a peer-reviewed, open-access journal dedicated to scientific research in the field of tissue engineering and its clinical applications. Our journal encompasses a wide range of interests, from the fundamental aspects of stem cells and progenitor cells, including their expansion to viable numbers, to an in-depth understanding of their differentiation processes. Join us in exploring the latest advancements in tissue engineering and its clinical translation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信