{"title":"Spray dried acerola (<i>Malpighia emarginata</i> DC) juice particles to produce phytochemical-rich starch-based edible films.","authors":"Dayene Nunes Ribeiro, Kátia Cristina Borges, Kátia Nicolau Matsui, Roberta Targino Hoskin","doi":"10.1080/02652048.2024.2313234","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to produce spray dried acerola juice microparticles with different protein carriers to be incorporated into edible starch films. The microparticles were evaluated for solids recovery, polyphenol retention, solubility, hygroscopicity, particle size distribution, X-ray diffraction, phytochemical compounds and antioxidant activity. Acerola microparticles produced with WPI/hydrolysed collagen carriers (AWC) with higher solids recovery (53.5 ± 0.34% w/w), polyphenol retention (74.4 ± 0.44% w/w), high solubility in water (85.2 ± 0.4% w/w), total polyphenol content (128.45 ± 2.44 mg GAE/g) and good storage stability were selected to produce starch-based films by casting. As a result, cassava films with water vapour permeability of 0.29 ± 0.07 g mm/m<sup>2</sup> h KPa, polyphenol content of 10.15 ± 0.22 mg GAE/g film and DPPH radical scavenging activity of 6.57 ± 0.13 μM TE/g film, with greater migration of polyphenol to water (6.30 ± 0.52 mg GAE/g film) were obtained. Our results show that the incorporation of phytochemical-rich fruit microparticles is a promising strategy to create biodegradable edible films.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"112-126"},"PeriodicalIF":3.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microencapsulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02652048.2024.2313234","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to produce spray dried acerola juice microparticles with different protein carriers to be incorporated into edible starch films. The microparticles were evaluated for solids recovery, polyphenol retention, solubility, hygroscopicity, particle size distribution, X-ray diffraction, phytochemical compounds and antioxidant activity. Acerola microparticles produced with WPI/hydrolysed collagen carriers (AWC) with higher solids recovery (53.5 ± 0.34% w/w), polyphenol retention (74.4 ± 0.44% w/w), high solubility in water (85.2 ± 0.4% w/w), total polyphenol content (128.45 ± 2.44 mg GAE/g) and good storage stability were selected to produce starch-based films by casting. As a result, cassava films with water vapour permeability of 0.29 ± 0.07 g mm/m2 h KPa, polyphenol content of 10.15 ± 0.22 mg GAE/g film and DPPH radical scavenging activity of 6.57 ± 0.13 μM TE/g film, with greater migration of polyphenol to water (6.30 ± 0.52 mg GAE/g film) were obtained. Our results show that the incorporation of phytochemical-rich fruit microparticles is a promising strategy to create biodegradable edible films.
期刊介绍:
The Journal of Microencapsulation is a well-established, peer-reviewed journal dedicated to the publication of original research findings related to the preparation, properties and uses of individually encapsulated novel small particles, as well as significant improvements to tried-and-tested techniques relevant to micro and nano particles and their use in a wide variety of industrial, engineering, pharmaceutical, biotechnology and research applications. Its scope extends beyond conventional microcapsules to all other small particulate systems such as self assembling structures that involve preparative manipulation.
The journal covers:
Chemistry of encapsulation materials
Physics of release through the capsule wall and/or desorption from carrier
Techniques of preparation, content and storage
Many uses to which microcapsules are put.