Derrick Lim, William Pei, Jae W Lee, Kristin E Musselman, Kei Masani
{"title":"Feasibility of using a depth camera or pressure mat for visual feedback balance training with functional electrical stimulation.","authors":"Derrick Lim, William Pei, Jae W Lee, Kristin E Musselman, Kei Masani","doi":"10.1186/s12938-023-01191-y","DOIUrl":null,"url":null,"abstract":"<p><p>Individuals with incomplete spinal-cord injury/disease are at an increased risk of falling due to their impaired ability to maintain balance. Our research group has developed a closed-loop visual-feedback balance training (VFBT) system coupled with functional electrical stimulation (FES) for rehabilitation of standing balance (FES + VFBT system); however, clinical usage of this system is limited by the use of force plates, which are expensive and not easily accessible. This study aimed to investigate the feasibility of a more affordable and accessible sensor such as a depth camera or pressure mat in place of the force plate. Ten able-bodied participants (7 males, 3 females) performed three sets of four different standing balance exercises using the FES + VFBT system with the force plate. A depth camera and pressure mat collected centre of mass and centre of pressure data passively, respectively. The depth camera showed higher Pearson's correlation (r > 98) and lower root mean squared error (RMSE < 10 mm) than the pressure mat (r > 0.82; RMSE < 4.5 mm) when compared with the force plate overall. Stimulation based on the depth camera showed lower RMSE than that based on the pressure mat relative to the FES + VFBT system. The depth camera shows potential as a replacement sensor to the force plate for providing feedback to the FES + VFBT system.</p>","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"23 1","pages":"19"},"PeriodicalIF":2.9000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10863251/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedical Engineering OnLine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12938-023-01191-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Individuals with incomplete spinal-cord injury/disease are at an increased risk of falling due to their impaired ability to maintain balance. Our research group has developed a closed-loop visual-feedback balance training (VFBT) system coupled with functional electrical stimulation (FES) for rehabilitation of standing balance (FES + VFBT system); however, clinical usage of this system is limited by the use of force plates, which are expensive and not easily accessible. This study aimed to investigate the feasibility of a more affordable and accessible sensor such as a depth camera or pressure mat in place of the force plate. Ten able-bodied participants (7 males, 3 females) performed three sets of four different standing balance exercises using the FES + VFBT system with the force plate. A depth camera and pressure mat collected centre of mass and centre of pressure data passively, respectively. The depth camera showed higher Pearson's correlation (r > 98) and lower root mean squared error (RMSE < 10 mm) than the pressure mat (r > 0.82; RMSE < 4.5 mm) when compared with the force plate overall. Stimulation based on the depth camera showed lower RMSE than that based on the pressure mat relative to the FES + VFBT system. The depth camera shows potential as a replacement sensor to the force plate for providing feedback to the FES + VFBT system.
期刊介绍:
BioMedical Engineering OnLine is an open access, peer-reviewed journal that is dedicated to publishing research in all areas of biomedical engineering.
BioMedical Engineering OnLine is aimed at readers and authors throughout the world, with an interest in using tools of the physical and data sciences and techniques in engineering to understand and solve problems in the biological and medical sciences. Topical areas include, but are not limited to:
Bioinformatics-
Bioinstrumentation-
Biomechanics-
Biomedical Devices & Instrumentation-
Biomedical Signal Processing-
Healthcare Information Systems-
Human Dynamics-
Neural Engineering-
Rehabilitation Engineering-
Biomaterials-
Biomedical Imaging & Image Processing-
BioMEMS and On-Chip Devices-
Bio-Micro/Nano Technologies-
Biomolecular Engineering-
Biosensors-
Cardiovascular Systems Engineering-
Cellular Engineering-
Clinical Engineering-
Computational Biology-
Drug Delivery Technologies-
Modeling Methodologies-
Nanomaterials and Nanotechnology in Biomedicine-
Respiratory Systems Engineering-
Robotics in Medicine-
Systems and Synthetic Biology-
Systems Biology-
Telemedicine/Smartphone Applications in Medicine-
Therapeutic Systems, Devices and Technologies-
Tissue Engineering