Jiake Gu, Peiying Zhang, Huajun Li, Yisen Wang, Ying Huang, Lei Fan*, Xiao Ma, Xiaodong Qian* and Juqun Xi*,
{"title":"Cerium–Luteolin Nanocomplexes in Managing Inflammation-Related Diseases by Antioxidant and Immunoregulation","authors":"Jiake Gu, Peiying Zhang, Huajun Li, Yisen Wang, Ying Huang, Lei Fan*, Xiao Ma, Xiaodong Qian* and Juqun Xi*, ","doi":"10.1021/acsnano.3c09528","DOIUrl":null,"url":null,"abstract":"<p >Oxidative stress, characterized by an imbalance between reactive oxygen species (ROS) production and the antioxidant defense system, plays a pivotal role in inflammation-related diseases. Excessive ROS levels can induce cellular damage and impair normal physiological functions, triggering the release of inflammatory mediators and exacerbating the inflammatory response, ultimately leading to irreversible tissue damage. In this study, we synthesized cerium ion–luteolin nanocomplexes (CeLutNCs) by coordinating Ce ions with the natural product luteolin, aiming to develop a therapeutic agent with excellent antioxidant and immunoregulation properties for ROS-related inflammation treatment. <i>In vitro</i> experiments demonstrated that the prepared CeLutNCs effectively scavenged excess ROS, prevented cell apoptosis, down-regulated levels of important inflammatory cytokines, regulated the response of inflammatory macrophages, and suppressed the activation of the nuclear factor-κ-gene binding (NF-κB) pathway. In an acute kidney injury (AKI) animal model, CeLutNCs exhibited significant efficacy in improving kidney function, repairing damaged renal tissue, and reducing oxidative stress, inflammatory response, and cellular apoptosis. Moreover, the therapeutic potential of CeLutNCs in an acute lung injury (ALI) model was confirmed through the assessment of inflammatory responses and histopathological studies. This study emphasizes the effectiveness of these metal–natural product coordination nanocomplexes as a promising therapeutic approach for preventing AKI and other diseases associated with oxidative stress.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 8","pages":"6229–6242"},"PeriodicalIF":15.8000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.3c09528","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Oxidative stress, characterized by an imbalance between reactive oxygen species (ROS) production and the antioxidant defense system, plays a pivotal role in inflammation-related diseases. Excessive ROS levels can induce cellular damage and impair normal physiological functions, triggering the release of inflammatory mediators and exacerbating the inflammatory response, ultimately leading to irreversible tissue damage. In this study, we synthesized cerium ion–luteolin nanocomplexes (CeLutNCs) by coordinating Ce ions with the natural product luteolin, aiming to develop a therapeutic agent with excellent antioxidant and immunoregulation properties for ROS-related inflammation treatment. In vitro experiments demonstrated that the prepared CeLutNCs effectively scavenged excess ROS, prevented cell apoptosis, down-regulated levels of important inflammatory cytokines, regulated the response of inflammatory macrophages, and suppressed the activation of the nuclear factor-κ-gene binding (NF-κB) pathway. In an acute kidney injury (AKI) animal model, CeLutNCs exhibited significant efficacy in improving kidney function, repairing damaged renal tissue, and reducing oxidative stress, inflammatory response, and cellular apoptosis. Moreover, the therapeutic potential of CeLutNCs in an acute lung injury (ALI) model was confirmed through the assessment of inflammatory responses and histopathological studies. This study emphasizes the effectiveness of these metal–natural product coordination nanocomplexes as a promising therapeutic approach for preventing AKI and other diseases associated with oxidative stress.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.