Systematic enhancement of microbial decontamination efficiency in bone graft processing by means of high hydrostatic pressure using Escherichia coli as a model organism
Henrike Loeffler, Janine Waletzko-Hellwig, Ralf-Joerg Fischer, Mirko Basen, Marcus Frank, Anika Jonitz-Heincke, Rainer Bader, Annett Klinder
{"title":"Systematic enhancement of microbial decontamination efficiency in bone graft processing by means of high hydrostatic pressure using Escherichia coli as a model organism","authors":"Henrike Loeffler, Janine Waletzko-Hellwig, Ralf-Joerg Fischer, Mirko Basen, Marcus Frank, Anika Jonitz-Heincke, Rainer Bader, Annett Klinder","doi":"10.1002/jbm.b.35383","DOIUrl":null,"url":null,"abstract":"<p>To obtain bone allografts that are safe for transplantation, several processing steps for decellularization and decontamination have to be applied. Currently available processing methods, although well-established, may interfere with the biomechanical properties of the bone. High hydrostatic pressure (HHP) is known to devitalize tissues effectively while leaving the extracellular matrix intact. However, little is known about the inactivation of the contaminating microorganisms by HHP. This study aims to investigate the ability of high-pressure decontamination and to establish a treatment protocol that is able to successfully inactivate microorganisms with the final goal to sterilize bone specimens. Using <i>Escherichia coli (E. coli)</i> as a model organism, HHP treatment parameters like temperature and duration, pressurization medium, and the number of treatment cycles were systematically adjusted to maximize the efficiency of inactivating logarithmic and stationary phase bacteria. Towards that we quantified colony-forming units (cfu) after treatment and investigated morphological changes via Field Emission Scanning Electron Microscopy (FESEM). Additionally, we tested the decontamination efficiency of HHP in bovine cancellous bone blocks that were contaminated with bacteria. Finally, two further model organisms were evaluated, namely <i>Pseudomonas fluorescens</i> as a Gram-negative microorganism and <i>Micrococcus luteus</i> as a Gram-positive representative. A HHP protocol, using 350 MPa, was able to sterilize a suspension of stationary phase <i>E. coli</i>, leading to a logarithmic reduction factor (log RF) of at least −7.99 (±0.43). The decontamination of bone blocks was less successful, indicating a protective effect of the surrounding tissue. Sterilization of 100% of the samples was achieved when a protocol optimized in terms of treatment temperature, duration, pressurization medium, and number and/or interval of cycles, respectively, was applied to bone blocks artificially contaminated with a suspension containing 10<sup>4</sup> cfu/mL. Hence, we here successfully established protocols for inactivating Gram-negative model microorganisms by HHP of up to 350 MPa, while pressure levels of 600 MPa were needed to inactivate the Gram-positive model organism. Thus, this study provides a basis for further investigations on different pathogenic bacteria that could enable the use of HHP in the decontamination of bone grafts intended for transplantation.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35383","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35383","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To obtain bone allografts that are safe for transplantation, several processing steps for decellularization and decontamination have to be applied. Currently available processing methods, although well-established, may interfere with the biomechanical properties of the bone. High hydrostatic pressure (HHP) is known to devitalize tissues effectively while leaving the extracellular matrix intact. However, little is known about the inactivation of the contaminating microorganisms by HHP. This study aims to investigate the ability of high-pressure decontamination and to establish a treatment protocol that is able to successfully inactivate microorganisms with the final goal to sterilize bone specimens. Using Escherichia coli (E. coli) as a model organism, HHP treatment parameters like temperature and duration, pressurization medium, and the number of treatment cycles were systematically adjusted to maximize the efficiency of inactivating logarithmic and stationary phase bacteria. Towards that we quantified colony-forming units (cfu) after treatment and investigated morphological changes via Field Emission Scanning Electron Microscopy (FESEM). Additionally, we tested the decontamination efficiency of HHP in bovine cancellous bone blocks that were contaminated with bacteria. Finally, two further model organisms were evaluated, namely Pseudomonas fluorescens as a Gram-negative microorganism and Micrococcus luteus as a Gram-positive representative. A HHP protocol, using 350 MPa, was able to sterilize a suspension of stationary phase E. coli, leading to a logarithmic reduction factor (log RF) of at least −7.99 (±0.43). The decontamination of bone blocks was less successful, indicating a protective effect of the surrounding tissue. Sterilization of 100% of the samples was achieved when a protocol optimized in terms of treatment temperature, duration, pressurization medium, and number and/or interval of cycles, respectively, was applied to bone blocks artificially contaminated with a suspension containing 104 cfu/mL. Hence, we here successfully established protocols for inactivating Gram-negative model microorganisms by HHP of up to 350 MPa, while pressure levels of 600 MPa were needed to inactivate the Gram-positive model organism. Thus, this study provides a basis for further investigations on different pathogenic bacteria that could enable the use of HHP in the decontamination of bone grafts intended for transplantation.
期刊介绍:
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats:
• original research reports
• short research and development reports
• scientific reviews
• current concepts articles
• special reports
• editorials
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.