Xiaowei Ma , Hong Jiao , Yang Zhao , Shan Huang , Bo Yang
{"title":"Does open data have the potential to improve the response of science to public health emergencies?","authors":"Xiaowei Ma , Hong Jiao , Yang Zhao , Shan Huang , Bo Yang","doi":"10.1016/j.joi.2024.101505","DOIUrl":null,"url":null,"abstract":"<div><p>Open data was recognized as essential to prevent and treat pandemic infection through sharing, disseminating, and using relevant information. This study explores how and to what extent open data influenced the response of science to such emergencies from a quantitative perspective. Based on the genetic datasets for viruses associated with Ebola, SARS, MERS, and COVID-19, we analyze the efficiency of data sharing and dissemination from a knowledge flow perspective: \"datasets→papers\", \"datasets→patents\", and \"datasets→papers→patents\". The results showed: (1) From the early Ebola outbreak to the recent COVID-19 pandemic, data sharing has been increasingly open and timely. (2) Basic research and the developments of vaccine and medicine related to the pandemics have increasingly relied on open data, providing more data-driven alternatives. (3) From Ebola to COVID-19, the citation lags of highly cited datasets have decreased in both papers and patents, demonstrating that open data can accelerate the development of science and technology to address the epidemics. In conclusion, open data can potentially improve science's response to public health emergencies by saving precious time. Therefore, much greater efforts by the scientific community to open data are well deserved.</p></div>","PeriodicalId":48662,"journal":{"name":"Journal of Informetrics","volume":"18 2","pages":"Article 101505"},"PeriodicalIF":3.4000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Informetrics","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S175115772400018X","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Open data was recognized as essential to prevent and treat pandemic infection through sharing, disseminating, and using relevant information. This study explores how and to what extent open data influenced the response of science to such emergencies from a quantitative perspective. Based on the genetic datasets for viruses associated with Ebola, SARS, MERS, and COVID-19, we analyze the efficiency of data sharing and dissemination from a knowledge flow perspective: "datasets→papers", "datasets→patents", and "datasets→papers→patents". The results showed: (1) From the early Ebola outbreak to the recent COVID-19 pandemic, data sharing has been increasingly open and timely. (2) Basic research and the developments of vaccine and medicine related to the pandemics have increasingly relied on open data, providing more data-driven alternatives. (3) From Ebola to COVID-19, the citation lags of highly cited datasets have decreased in both papers and patents, demonstrating that open data can accelerate the development of science and technology to address the epidemics. In conclusion, open data can potentially improve science's response to public health emergencies by saving precious time. Therefore, much greater efforts by the scientific community to open data are well deserved.
期刊介绍:
Journal of Informetrics (JOI) publishes rigorous high-quality research on quantitative aspects of information science. The main focus of the journal is on topics in bibliometrics, scientometrics, webometrics, patentometrics, altmetrics and research evaluation. Contributions studying informetric problems using methods from other quantitative fields, such as mathematics, statistics, computer science, economics and econometrics, and network science, are especially encouraged. JOI publishes both theoretical and empirical work. In general, case studies, for instance a bibliometric analysis focusing on a specific research field or a specific country, are not considered suitable for publication in JOI, unless they contain innovative methodological elements.