Employing synthetic biology to expand antibiotic discovery

IF 2.5 4区 医学 Q3 BIOCHEMICAL RESEARCH METHODS
Greta D. Cook, Nikolas M. Stasulli
{"title":"Employing synthetic biology to expand antibiotic discovery","authors":"Greta D. Cook,&nbsp;Nikolas M. Stasulli","doi":"10.1016/j.slast.2024.100120","DOIUrl":null,"url":null,"abstract":"<div><p>Antimicrobial-resistant (AMR) bacterial pathogens are a continually growing threat as our methods for combating these infections continue to be overcome by the evolution of resistance mechanisms. Recent therapeutic methods have not staved off the concern of AMR infections, so continued research focuses on new ways of identifying small molecules to treat AMR pathogens. While chemical modification of existing antibiotics is possible, there has been rapid development of resistance by pathogens that were initially susceptible to these compounds. Synthetic biology is becoming a key strategy in trying to predict and induce novel, natural antibiotics. Advances in cloning and mutagenesis techniques applied through a synthetic biology lens can help characterize the native regulation of antibiotic biosynthetic gene clusters (BGCs) to identify potential modifications leading to more potent antibiotic activity. Additionally, many cryptic antibiotic BGCs are derived from non-ribosomal peptide synthase (NRPS) and polyketide synthase (PKS) biosynthetic pathways; complex, clustered genetic sequences that give rise to amino acid-derived natural products. Synthetic biology can be applied to modify and metabolically engineer these enzyme-based systems to promote rapid and sustainable production of natural products and their variants. This review will focus on recent advances related to synthetic biology as applied to genetic pathway characterization and identification of antibiotics from naturally occurring BGCs. Specifically, we will summarize recent efforts to characterize BGCs via general genomic mutagenesis, endogenous gene expression, and heterologous gene expression.</p></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472630324000025/pdfft?md5=03b5934836e03ebc9889e14a0328014c&pid=1-s2.0-S2472630324000025-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Technology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472630324000025","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Antimicrobial-resistant (AMR) bacterial pathogens are a continually growing threat as our methods for combating these infections continue to be overcome by the evolution of resistance mechanisms. Recent therapeutic methods have not staved off the concern of AMR infections, so continued research focuses on new ways of identifying small molecules to treat AMR pathogens. While chemical modification of existing antibiotics is possible, there has been rapid development of resistance by pathogens that were initially susceptible to these compounds. Synthetic biology is becoming a key strategy in trying to predict and induce novel, natural antibiotics. Advances in cloning and mutagenesis techniques applied through a synthetic biology lens can help characterize the native regulation of antibiotic biosynthetic gene clusters (BGCs) to identify potential modifications leading to more potent antibiotic activity. Additionally, many cryptic antibiotic BGCs are derived from non-ribosomal peptide synthase (NRPS) and polyketide synthase (PKS) biosynthetic pathways; complex, clustered genetic sequences that give rise to amino acid-derived natural products. Synthetic biology can be applied to modify and metabolically engineer these enzyme-based systems to promote rapid and sustainable production of natural products and their variants. This review will focus on recent advances related to synthetic biology as applied to genetic pathway characterization and identification of antibiotics from naturally occurring BGCs. Specifically, we will summarize recent efforts to characterize BGCs via general genomic mutagenesis, endogenous gene expression, and heterologous gene expression.

利用合成生物学扩大抗生素发现。
抗菌剂耐药性(AMR)细菌病原体的威胁与日俱增,因为我们对付这些感染的方法不断被耐药性机制的进化所攻克。最近的治疗方法并没有消除人们对 AMR 感染的担忧,因此,持续研究的重点是找出治疗 AMR 病原体的小分子新方法。虽然可以对现有抗生素进行化学修饰,但最初对这些化合物敏感的病原体的抗药性发展迅速。合成生物学正成为预测和诱导新型天然抗生素的关键策略。从合成生物学的角度来看,克隆和诱变技术的进步有助于描述抗生素生物合成基因簇(BGC)的原生调控特性,从而确定潜在的修饰,以获得更强的抗生素活性。此外,许多隐性抗生素 BGC 来自非核糖体肽合成酶(NRPS)和多酮苷合成酶(PKS)生物合成途径;这些复杂的基因序列群能产生氨基酸衍生天然产物。合成生物学可用于改造和代谢工程这些基于酶的系统,以促进天然产品及其变体的快速和可持续生产。本综述将重点介绍与合成生物学有关的最新进展,这些进展被应用于遗传途径表征和天然 BGCs 抗生素的鉴定。具体来说,我们将总结最近通过一般基因组诱变、内源基因表达和异源基因表达来表征 BGCs 的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SLAS Technology
SLAS Technology Computer Science-Computer Science Applications
CiteScore
6.30
自引率
7.40%
发文量
47
审稿时长
106 days
期刊介绍: SLAS Technology emphasizes scientific and technical advances that enable and improve life sciences research and development; drug-delivery; diagnostics; biomedical and molecular imaging; and personalized and precision medicine. This includes high-throughput and other laboratory automation technologies; micro/nanotechnologies; analytical, separation and quantitative techniques; synthetic chemistry and biology; informatics (data analysis, statistics, bio, genomic and chemoinformatics); and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信