Banff scoring of kidney allograft biopsies: "Manual" application vs software-assisted sign-out.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Anthony J Demetris, Andrew J Lesniak, Benjamin A Popp, Ronald J Frencho, Marta I Minervini, Michael A Nalesnik, Mohamed I El Hag, Sundaram Hariharan, Parmjeet S Randhawa
{"title":"Banff scoring of kidney allograft biopsies: \"Manual\" application vs software-assisted sign-out.","authors":"Anthony J Demetris, Andrew J Lesniak, Benjamin A Popp, Ronald J Frencho, Marta I Minervini, Michael A Nalesnik, Mohamed I El Hag, Sundaram Hariharan, Parmjeet S Randhawa","doi":"10.1093/ajcp/aqad180","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Pathologists interpreting kidney allograft biopsies using the Banff system usually start by recording component scores (eg, i, t, cg) using histopathologic criteria committed to memory. Component scores are then melded into diagnoses using the same manual/mental processes. This approach to complex Banff rules during routine sign-out produces a lack of fidelity and needs improvement.</p><p><strong>Methods: </strong>We constructed a web-based \"smart template\" (software-assisted sign-out) system that uniquely starts with upstream Banff-defined additional diagnostic parameters (eg, infection) and histopathologic criteria (eg, percent interstitial inflammation) collectively referred to as feeder data that is then translated into component scores and integrated into final diagnoses using software-encoded decision trees.</p><p><strong>Results: </strong>Software-assisted sign-out enables pathologists to (1) accurately and uniformly apply Banff rules, thereby eliminating human inconsistencies (present in 25% of the cohort); (2) document areas of improvement; (3) show improved correlation with function; (4) examine t-Distributed Stochastic Neighbor Embedding clustering for diagnosis stratification; and (5) ready upstream incorporation of artificial intelligence-assisted scoring of biopsies.</p><p><strong>Conclusions: </strong>Compared with the legacy approach, software-assisted sign-out improves Banff accuracy and fidelity, more closely correlates with kidney function, is practical for routine clinical work and translational research studies, facilitates downstream integration with nonpathology data, and readies biopsy scoring for artificial intelligence algorithms.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/ajcp/aqad180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Pathologists interpreting kidney allograft biopsies using the Banff system usually start by recording component scores (eg, i, t, cg) using histopathologic criteria committed to memory. Component scores are then melded into diagnoses using the same manual/mental processes. This approach to complex Banff rules during routine sign-out produces a lack of fidelity and needs improvement.

Methods: We constructed a web-based "smart template" (software-assisted sign-out) system that uniquely starts with upstream Banff-defined additional diagnostic parameters (eg, infection) and histopathologic criteria (eg, percent interstitial inflammation) collectively referred to as feeder data that is then translated into component scores and integrated into final diagnoses using software-encoded decision trees.

Results: Software-assisted sign-out enables pathologists to (1) accurately and uniformly apply Banff rules, thereby eliminating human inconsistencies (present in 25% of the cohort); (2) document areas of improvement; (3) show improved correlation with function; (4) examine t-Distributed Stochastic Neighbor Embedding clustering for diagnosis stratification; and (5) ready upstream incorporation of artificial intelligence-assisted scoring of biopsies.

Conclusions: Compared with the legacy approach, software-assisted sign-out improves Banff accuracy and fidelity, more closely correlates with kidney function, is practical for routine clinical work and translational research studies, facilitates downstream integration with nonpathology data, and readies biopsy scoring for artificial intelligence algorithms.

肾移植活检的 Banff 评分:"手动 "应用与软件辅助签出。
目的:病理学家在使用班夫系统解读肾脏异体活组织切片时,通常首先使用记忆中的组织病理学标准记录成分分数(如 i、t、cg)。然后使用相同的手动/心算过程将成分分数合并为诊断结果。这种在常规签出过程中使用复杂班夫规则的方法缺乏真实性,需要改进:方法:我们构建了一个基于网络的 "智能模板"(软件辅助签出)系统,该系统从上游班夫定义的附加诊断参数(如感染)和组织病理学标准(如间质性炎症百分比)开始,这些参数和标准统称为馈线数据,然后通过软件编码的决策树将这些数据转化为成分分数并整合到最终诊断中:软件辅助签出使病理学家能够:(1) 准确统一地应用班夫规则,从而消除人为的不一致性(25% 的队列中存在这种情况);(2) 记录需要改进的领域;(3) 显示与功能的相关性得到改善;(4) 检查用于诊断分层的 t 分布随机邻接嵌入聚类;(5) 准备在上游纳入人工智能辅助活检评分:结论:与传统方法相比,软件辅助签出提高了 Banff 的准确性和保真度,与肾功能的相关性更强,对常规临床工作和转化研究非常实用,便于与非病理数据进行下游整合,并为人工智能算法的活检评分做好了准备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信