Room temperature nonlocal detection of charge-spin interconversion in a topological insulator

IF 9.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Md. Anamul Hoque, Lars Sjöström, Dmitrii Khokhriakov, Bing Zhao, Saroj Prasad Dash
{"title":"Room temperature nonlocal detection of charge-spin interconversion in a topological insulator","authors":"Md. Anamul Hoque, Lars Sjöström, Dmitrii Khokhriakov, Bing Zhao, Saroj Prasad Dash","doi":"10.1038/s41699-024-00447-y","DOIUrl":null,"url":null,"abstract":"Topological insulators (TIs) are emerging materials for next-generation low-power nanoelectronic and spintronic device applications. TIs possess non-trivial spin-momentum locking features in the topological surface states in addition to the spin-Hall effect (SHE), and Rashba states due to high spin-orbit coupling (SOC) properties. These phenomena are vital for observing the charge-spin conversion (CSC) processes for spin-based memory, logic and quantum technologies. Although CSC has been observed in TIs by potentiometric measurements, reliable nonlocal detection has so far been limited to cryogenic temperatures up to T = 15 K. Here, we report nonlocal detection of CSC and its inverse effect in the TI compound Bi1.5Sb0.5Te1.7Se1.3 at room temperature using a van der Waals heterostructure with a graphene spin-valve device. The lateral nonlocal device design with graphene allows observation of both spin-switch and Hanle spin precession signals for generation, injection and detection of spin currents by the TI. Detailed bias- and gate-dependent measurements in different geometries prove the robustness of the CSC effects in the TI. These findings demonstrate the possibility of using topological materials to make all-electrical room-temperature spintronic devices.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-8"},"PeriodicalIF":9.1000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00447-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj 2D Materials and Applications","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41699-024-00447-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Topological insulators (TIs) are emerging materials for next-generation low-power nanoelectronic and spintronic device applications. TIs possess non-trivial spin-momentum locking features in the topological surface states in addition to the spin-Hall effect (SHE), and Rashba states due to high spin-orbit coupling (SOC) properties. These phenomena are vital for observing the charge-spin conversion (CSC) processes for spin-based memory, logic and quantum technologies. Although CSC has been observed in TIs by potentiometric measurements, reliable nonlocal detection has so far been limited to cryogenic temperatures up to T = 15 K. Here, we report nonlocal detection of CSC and its inverse effect in the TI compound Bi1.5Sb0.5Te1.7Se1.3 at room temperature using a van der Waals heterostructure with a graphene spin-valve device. The lateral nonlocal device design with graphene allows observation of both spin-switch and Hanle spin precession signals for generation, injection and detection of spin currents by the TI. Detailed bias- and gate-dependent measurements in different geometries prove the robustness of the CSC effects in the TI. These findings demonstrate the possibility of using topological materials to make all-electrical room-temperature spintronic devices.

Abstract Image

拓扑绝缘体中电荷-自旋互转的室温非局域探测
拓扑绝缘体(TIs)是下一代低功耗纳米电子和自旋电子器件应用的新兴材料。除了自旋霍尔效应(SHE)和高自旋轨道耦合(SOC)特性导致的拉什巴状态外,拓扑绝缘体的表面态还具有非三重自旋动量锁定特性。这些现象对于观察基于自旋的存储器、逻辑和量子技术的电荷-自旋转换(CSC)过程至关重要。这里,我们报告了在室温条件下,利用带有石墨烯自旋阀器件的范德华异质结构,在 TI 化合物 Bi1.5Sb0.5Te1.7Se1.3 中对 CSC 及其反向效应的非局部探测。利用石墨烯的横向非局部器件设计,可以观察到自旋开关和汉乐自旋前驱信号,从而通过 TI 产生、注入和检测自旋电流。在不同几何结构中进行的偏置和栅极依赖性详细测量证明了 TI 中 CSC 效应的稳健性。这些发现证明了使用拓扑材料制造全电室温自旋电子器件的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj 2D Materials and Applications
npj 2D Materials and Applications Engineering-Mechanics of Materials
CiteScore
14.50
自引率
2.10%
发文量
80
审稿时长
15 weeks
期刊介绍: npj 2D Materials and Applications publishes papers on the fundamental behavior, synthesis, properties and applications of existing and emerging 2D materials. By selecting papers with the potential for impact, the journal aims to facilitate the transfer of the research of 2D materials into wide-ranging applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信