On the complexity of analyticity in semi-definite optimization

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Saugata Basu , Ali Mohammad-Nezhad
{"title":"On the complexity of analyticity in semi-definite optimization","authors":"Saugata Basu ,&nbsp;Ali Mohammad-Nezhad","doi":"10.1016/j.aam.2024.102670","DOIUrl":null,"url":null,"abstract":"<div><p>It is well-known that the central path of semi-definite optimization, unlike linear optimization, has no analytic extension to <span><math><mi>μ</mi><mo>=</mo><mn>0</mn></math></span> in the absence of the strict complementarity condition. In this paper, we consider a reparametrization <span><math><mi>μ</mi><mo>↦</mo><msup><mrow><mi>μ</mi></mrow><mrow><mi>ρ</mi></mrow></msup></math></span>, with <em>ρ</em> being a positive integer, that recovers the analyticity of the central path at <span><math><mi>μ</mi><mo>=</mo><mn>0</mn></math></span>. We investigate the complexity of computing <em>ρ</em> using algorithmic real algebraic geometry and the theory of complex algebraic curves. We prove that the optimal <em>ρ</em> is bounded by <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>m</mi><mo>+</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>)</mo></mrow></msup></math></span>, where <em>n</em> is the matrix size and <em>m</em> is the number of affine constraints. Our approach leads to a symbolic algorithm, based on the Newton-Puiseux algorithm, which computes a feasible <em>ρ</em> using <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>m</mi><mo>+</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></msup></math></span> arithmetic operations.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824000010","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

It is well-known that the central path of semi-definite optimization, unlike linear optimization, has no analytic extension to μ=0 in the absence of the strict complementarity condition. In this paper, we consider a reparametrization μμρ, with ρ being a positive integer, that recovers the analyticity of the central path at μ=0. We investigate the complexity of computing ρ using algorithmic real algebraic geometry and the theory of complex algebraic curves. We prove that the optimal ρ is bounded by 2O(m2+n2m+n4), where n is the matrix size and m is the number of affine constraints. Our approach leads to a symbolic algorithm, based on the Newton-Puiseux algorithm, which computes a feasible ρ using 2O(m+n2) arithmetic operations.

论半有限优化中解析的复杂性
众所周知,半有限最优化的中心路径与线性最优化不同,在没有严格互补条件的情况下,中心路径没有解析延伸到μ=0。在本文中,我们考虑了一种重拟态 μ↦μρ,ρ 为正整数,它能恢复中心路径在 μ=0 处的解析性。我们利用算法实代数几何和复代数曲线理论研究了计算 ρ 的复杂性。我们证明最优 ρ 的边界为 2O(m2+n2m+n4),其中 n 是矩阵大小,m 是仿射约束的数量。我们的方法带来了一种基于牛顿-普伊索算法的符号算法,只需 2O(m+n2) 次算术运算即可计算出可行的 ρ。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信