Importance of feedstock powder selection for mechanical properties improvement of cold spray additively manufactured Ti6Al4V deposits

IF 4.2 Q2 ENGINEERING, MANUFACTURING
Jan Kondas , Mario Guagliano , Sara Bagherifard , Reeti Singh , Jan Cizek , Frantisek Lukac , Pavel Konopik , Sylwia Rzepa
{"title":"Importance of feedstock powder selection for mechanical properties improvement of cold spray additively manufactured Ti6Al4V deposits","authors":"Jan Kondas ,&nbsp;Mario Guagliano ,&nbsp;Sara Bagherifard ,&nbsp;Reeti Singh ,&nbsp;Jan Cizek ,&nbsp;Frantisek Lukac ,&nbsp;Pavel Konopik ,&nbsp;Sylwia Rzepa","doi":"10.1016/j.addlet.2024.100199","DOIUrl":null,"url":null,"abstract":"<div><p>CSAM (cold spray additive manufacturing) of Ti6Al4V is a challenging task and high-quality deposits conforming to the AM application standards have not been developed so far. In our study, two distinct feedstock Ti6Al4V powders with different morphology and microstructure, spherical and crystalline, were used and their influence on the deposits was investigated in terms of microstructure as well as tensile properties. The results indicate the mechanical strength and ductility of the as-deposited samples to be in the range of 8–30 % compared to wrought Ti6Al4V and highlight a significant anisotropy in different in-plane directions. The post-treatments of the deposits from the spherical, plasma atomized powder effectively reduced the porosity and triggered microstructural homogenization and recrystallization, leading to a significant increase in the yield and tensile strengths, reaching 892 MPa and 954 MPa, respectively, while achieving an enormous enhancement in the elongation to 21.6 % at the same time. This was in a striking contrast to the deposits from the crystalline powder: despite the yield and tensile strength increase to 853 MPa and 1058 MPa, respectively, the elongation remained virtually zero, highlighting the importance of the feedstock powder selection in cold spray additive manufacturing of Ti6Al4V.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772369024000082/pdfft?md5=020263670df00806d7a5dc302b676183&pid=1-s2.0-S2772369024000082-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369024000082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

CSAM (cold spray additive manufacturing) of Ti6Al4V is a challenging task and high-quality deposits conforming to the AM application standards have not been developed so far. In our study, two distinct feedstock Ti6Al4V powders with different morphology and microstructure, spherical and crystalline, were used and their influence on the deposits was investigated in terms of microstructure as well as tensile properties. The results indicate the mechanical strength and ductility of the as-deposited samples to be in the range of 8–30 % compared to wrought Ti6Al4V and highlight a significant anisotropy in different in-plane directions. The post-treatments of the deposits from the spherical, plasma atomized powder effectively reduced the porosity and triggered microstructural homogenization and recrystallization, leading to a significant increase in the yield and tensile strengths, reaching 892 MPa and 954 MPa, respectively, while achieving an enormous enhancement in the elongation to 21.6 % at the same time. This was in a striking contrast to the deposits from the crystalline powder: despite the yield and tensile strength increase to 853 MPa and 1058 MPa, respectively, the elongation remained virtually zero, highlighting the importance of the feedstock powder selection in cold spray additive manufacturing of Ti6Al4V.

原料粉末选择对改善冷喷加成法制造的 Ti6Al4V 沉积物机械性能的重要性
Ti6Al4V 的 CSAM(冷喷增材制造)是一项具有挑战性的任务,迄今为止尚未开发出符合 AM 应用标准的高质量沉积物。在我们的研究中,使用了两种具有不同形态和微观结构(球形和结晶形)的不同原料 Ti6Al4V 粉末,并研究了它们在微观结构和拉伸性能方面对沉积物的影响。结果表明,与锻造的 Ti6Al4V 相比,沉积样品的机械强度和延展性在 8-30% 之间,并且在不同的平面方向上存在明显的各向异性。球形等离子雾化粉末沉积物的后处理有效降低了孔隙率,并引发了微结构均质化和再结晶,使屈服强度和抗拉强度显著提高,分别达到 892 兆帕和 954 兆帕,同时伸长率大幅提高至 21.6%。这与来自结晶粉末的沉积物形成了鲜明对比:尽管屈服强度和拉伸强度分别提高到 853 兆帕和 1058 兆帕,但伸长率几乎为零,这凸显了在 Ti6Al4V 冷喷增材制造中原料粉末选择的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Additive manufacturing letters
Additive manufacturing letters Materials Science (General), Industrial and Manufacturing Engineering, Mechanics of Materials
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
37 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信