C. Gómez-Sacedón , E. López-Fernández , A.R. González-Elipe , J.P. Espinós , F. Yubero , J. Gil-Rostra , A. de Lucas-Consuegra
{"title":"NiFeO/NiFe bilayer electrocatalyst for an efficient urea assisted water electrolysis","authors":"C. Gómez-Sacedón , E. López-Fernández , A.R. González-Elipe , J.P. Espinós , F. Yubero , J. Gil-Rostra , A. de Lucas-Consuegra","doi":"10.1016/j.ijhydene.2024.02.079","DOIUrl":null,"url":null,"abstract":"<div><p>In this work a set of mono- and bi-layered nanostructured Ni–Fe electrocatalysts prepared by magnetron sputtering deposition in an oblique angle configuration have been tested as anodes for urea assisted water electrolysis. In a three-electrode cell, it was found that an oxide/metal bilayer outperforms single metal or oxide layer configurations for the urea electro-oxidation. It is also found that the incorporation of Fe within the Ni structure stabilizes the electrodes likely because it produces a decrease in the surface poisoning of the electrocatalyst. The improved performance observed for the oxide/metal bilayer configuration has been attributed to a synergetic effect between the active (oxy)hydroxide Ni–Fe catalytic species at the outer layers and a high electrical conductivity through the underlying metallic layer. The bilayer electrocatalyst tested in an anion exchange membrane water electrolyser showed an overpotential decrease of 0.13 V when comparing urea oxidation vs. pure water electrolysis. Results prove a synergetic effect between the hydrogen production through water electrolysis and the removal of organic pollutants in water.</p></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"59 ","pages":"Pages 604-613"},"PeriodicalIF":8.3000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924004889","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this work a set of mono- and bi-layered nanostructured Ni–Fe electrocatalysts prepared by magnetron sputtering deposition in an oblique angle configuration have been tested as anodes for urea assisted water electrolysis. In a three-electrode cell, it was found that an oxide/metal bilayer outperforms single metal or oxide layer configurations for the urea electro-oxidation. It is also found that the incorporation of Fe within the Ni structure stabilizes the electrodes likely because it produces a decrease in the surface poisoning of the electrocatalyst. The improved performance observed for the oxide/metal bilayer configuration has been attributed to a synergetic effect between the active (oxy)hydroxide Ni–Fe catalytic species at the outer layers and a high electrical conductivity through the underlying metallic layer. The bilayer electrocatalyst tested in an anion exchange membrane water electrolyser showed an overpotential decrease of 0.13 V when comparing urea oxidation vs. pure water electrolysis. Results prove a synergetic effect between the hydrogen production through water electrolysis and the removal of organic pollutants in water.
期刊介绍:
The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc.
The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.