Metallic nanostructures inclusion to improve energy harvesting in silicon

Q2 Engineering
Ricardo A. Marques Lameirinhas , Catarina P. Correia V. Bernardo , João Paulo N. Torres , António Baptista , Maria João Marques Martins
{"title":"Metallic nanostructures inclusion to improve energy harvesting in silicon","authors":"Ricardo A. Marques Lameirinhas ,&nbsp;Catarina P. Correia V. Bernardo ,&nbsp;João Paulo N. Torres ,&nbsp;António Baptista ,&nbsp;Maria João Marques Martins","doi":"10.1016/j.omx.2024.100298","DOIUrl":null,"url":null,"abstract":"<div><p>New phenomena have been discovered at the nanoscale that allow us to manipulate light and design devices. Evanescent waves such as Surface Plasmon Polaritons are excited in dielectric–metal interfaces and propagate in the metal. If they reach other interfaces, they may be transmitted by the metal. It is a phenomenon known as Extraordinary Optical Transmission that occurs in nanostructures at the optical range. Depending on the metal it is possible to tune the wavelengths and incident angles where this phenomenon occurs. Gold, silver, aluminium and copper nanolayers are analysed on top of silicon (a-Si and c-Si) considering a sweep between 250 nm and 2500 nm. Considering a novel model based on Fresnel Coefficients in absorbing media, it is possible to improve energy harvesting in the ultraviolet–visible range, mainly due to the propagation of Surface Plasmon Polaritons. Then, the role of Surface Plasmon Polaritons in Air–Metal–Silicon nanostructures is analysed. The inclusion of the metal layer may decrease the reflectance by at least 10%, reaching values higher than 60%. The presented charts allow us to analyse the materials, wavelengths and incident angles where reflectance is decreased. There, the inclusion of metal layers brings benefits to the photodetection, since more energy is available in the absorbing layer. Considering this approach, the detection of specific wavelengths may be improved by introducing metals in the detectors.</p></div>","PeriodicalId":52192,"journal":{"name":"Optical Materials: X","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259014782400010X/pdfft?md5=1e7123f11adc8cb31701bf421ff588d5&pid=1-s2.0-S259014782400010X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259014782400010X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

New phenomena have been discovered at the nanoscale that allow us to manipulate light and design devices. Evanescent waves such as Surface Plasmon Polaritons are excited in dielectric–metal interfaces and propagate in the metal. If they reach other interfaces, they may be transmitted by the metal. It is a phenomenon known as Extraordinary Optical Transmission that occurs in nanostructures at the optical range. Depending on the metal it is possible to tune the wavelengths and incident angles where this phenomenon occurs. Gold, silver, aluminium and copper nanolayers are analysed on top of silicon (a-Si and c-Si) considering a sweep between 250 nm and 2500 nm. Considering a novel model based on Fresnel Coefficients in absorbing media, it is possible to improve energy harvesting in the ultraviolet–visible range, mainly due to the propagation of Surface Plasmon Polaritons. Then, the role of Surface Plasmon Polaritons in Air–Metal–Silicon nanostructures is analysed. The inclusion of the metal layer may decrease the reflectance by at least 10%, reaching values higher than 60%. The presented charts allow us to analyse the materials, wavelengths and incident angles where reflectance is decreased. There, the inclusion of metal layers brings benefits to the photodetection, since more energy is available in the absorbing layer. Considering this approach, the detection of specific wavelengths may be improved by introducing metals in the detectors.

融入金属纳米结构,改善硅的能量收集性能
在纳米尺度上发现的新现象使我们能够操纵光线和设计设备。诸如表面等离子体极化子(Surface Plasmon Polaritons)等蒸发波在介质-金属界面中被激发,并在金属中传播。如果它们到达其他界面,则可能被金属传播。这种现象被称为 "超常光学传输",发生在光学范围内的纳米结构中。根据金属的不同,可以调整出现这种现象的波长和入射角度。我们分析了硅(a-Si 和 c-Si)表面的金、银、铝和铜纳米层,波长范围在 250 纳米到 2500 纳米之间。考虑到基于吸收介质中菲涅尔系数的新模型,有可能改善紫外-可见光范围内的能量收集,这主要是由于表面等离子体极化子的传播。然后,分析了表面等离子体极化子在空气-金属-硅纳米结构中的作用。金属层的加入会使反射率降低至少 10%,甚至高于 60%。通过图表,我们可以分析反射率降低的材料、波长和入射角度。在这种情况下,加入金属层会给光检测带来好处,因为吸收层中有更多的能量。考虑到这种方法,可以通过在探测器中引入金属来改进对特定波长的检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optical Materials: X
Optical Materials: X Engineering-Electrical and Electronic Engineering
CiteScore
3.30
自引率
0.00%
发文量
73
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信