Ultrashort large-bandwidth X-ray free-electron laser generation with a dielectric-lined waveguide.

IF 2.5 3区 物理与天体物理
Journal of Synchrotron Radiation Pub Date : 2024-03-01 Epub Date: 2024-02-09 DOI:10.1107/S1600577524000249
Yiwen Liu, Zhen Wang, Lingjun Tu, Chao Feng, Zhentang Zhao
{"title":"Ultrashort large-bandwidth X-ray free-electron laser generation with a dielectric-lined waveguide.","authors":"Yiwen Liu, Zhen Wang, Lingjun Tu, Chao Feng, Zhentang Zhao","doi":"10.1107/S1600577524000249","DOIUrl":null,"url":null,"abstract":"<p><p>Large-bandwidth pulses produced by cutting-edge X-ray free-electron lasers (FELs) are of great importance in research fields like material science and biology. In this paper, a new method to generate high-power ultrashort FEL pulses with tunable spectral bandwidth with spectral coherence using a dielectric-lined waveguide without interfering operation of linacs is proposed. By exploiting the passive and dephasingless wakefield at terahertz frequency excited by the beam, stable energy modulation can be achieved in the electron beam and large-bandwidth high-intensity soft X-ray radiation can be generated. Three-dimensional start-to-end simulations have been carried out and the results show that coherent radiation pulses with duration of a few femtoseconds and bandwidths ranging from 1.01% to 2.16% can be achieved by changing the undulator taper profile.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10914166/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synchrotron Radiation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1107/S1600577524000249","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Large-bandwidth pulses produced by cutting-edge X-ray free-electron lasers (FELs) are of great importance in research fields like material science and biology. In this paper, a new method to generate high-power ultrashort FEL pulses with tunable spectral bandwidth with spectral coherence using a dielectric-lined waveguide without interfering operation of linacs is proposed. By exploiting the passive and dephasingless wakefield at terahertz frequency excited by the beam, stable energy modulation can be achieved in the electron beam and large-bandwidth high-intensity soft X-ray radiation can be generated. Three-dimensional start-to-end simulations have been carried out and the results show that coherent radiation pulses with duration of a few femtoseconds and bandwidths ranging from 1.01% to 2.16% can be achieved by changing the undulator taper profile.

Abstract Image

利用介质衬里波导产生超短大带宽 X 射线自由电子激光。
尖端 X 射线自由电子激光器(FEL)产生的大带宽脉冲在材料科学和生物学等研究领域具有重要意义。本文提出了一种新方法,利用介质衬里波导产生具有可调光谱带宽和光谱相干性的高功率超短 FEL 脉冲,而不会干扰直列加速器的运行。通过利用由电子束激发的太赫兹频率的无源和无相位唤醒场,可以实现电子束中稳定的能量调制,并产生大带宽高强度软 X 射线辐射。我们进行了从头到尾的三维模拟,结果表明,通过改变起伏器锥形轮廓,可以获得持续时间为几飞秒、带宽范围为 1.01% 至 2.16% 的相干辐射脉冲。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Synchrotron Radiation
Journal of Synchrotron Radiation INSTRUMENTS & INSTRUMENTATIONOPTICS&-OPTICS
CiteScore
5.60
自引率
12.00%
发文量
289
审稿时长
1 months
期刊介绍: Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation and free-electron laser research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信