Analysis of the discrete contact characteristics based on the Greenwood-Williamson model and the localization principle

IF 6.3 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Friction Pub Date : 2024-02-02 DOI:10.1007/s40544-023-0849-0
Anastasiya A. Yakovenko, Irina G. Goryacheva
{"title":"Analysis of the discrete contact characteristics based on the Greenwood-Williamson model and the localization principle","authors":"Anastasiya A. Yakovenko, Irina G. Goryacheva","doi":"10.1007/s40544-023-0849-0","DOIUrl":null,"url":null,"abstract":"<p>The contact of a rigid body with nominally flat rough surface and an elastic half-space is considered. To solve the contact problem, the Greenwood-Williamson statistical model and the localization principle are used. The developed contact model allows us to investigate the surface approach and the real contact area with taking into account the asperities interaction. It is shown that the mutual influence of asperities changes not only contact characteristics at the macroscale, but also the contact pressure distribution at the microscale. As follows from the results, the inclusion in the contact model of the effect of the mutual influence of asperities is especially significant for studying the real contact area, as well as the contact characteristics at high applied loads. The results calculated according to the proposed approach are in a good agreement with the experimentally observed effects, i.e., the real contact area saturation and the additional compliance exhaustion.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40544-023-0849-0","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The contact of a rigid body with nominally flat rough surface and an elastic half-space is considered. To solve the contact problem, the Greenwood-Williamson statistical model and the localization principle are used. The developed contact model allows us to investigate the surface approach and the real contact area with taking into account the asperities interaction. It is shown that the mutual influence of asperities changes not only contact characteristics at the macroscale, but also the contact pressure distribution at the microscale. As follows from the results, the inclusion in the contact model of the effect of the mutual influence of asperities is especially significant for studying the real contact area, as well as the contact characteristics at high applied loads. The results calculated according to the proposed approach are in a good agreement with the experimentally observed effects, i.e., the real contact area saturation and the additional compliance exhaustion.

Abstract Image

基于格林伍德-威廉森模型和定位原理的离散接触特性分析
本研究考虑了具有名义平坦粗糙表面的刚体与弹性半空间的接触问题。为了解决接触问题,使用了格林伍德-威廉姆森统计模型和定位原理。利用所建立的接触模型,我们可以研究表面接近和实际接触面积,同时考虑到非球面的相互作用。结果表明,非晶体的相互影响不仅改变了宏观尺度上的接触特性,也改变了微观尺度上的接触压力分布。从结果可以看出,在接触模型中加入非晶体相互影响的效应对于研究实际接触面积以及高载荷下的接触特性尤为重要。根据提出的方法计算出的结果与实验观察到的效应(即实际接触面积饱和和额外顺应性耗尽)非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Friction
Friction Engineering-Mechanical Engineering
CiteScore
12.90
自引率
13.20%
发文量
324
审稿时长
13 weeks
期刊介绍: Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as: Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc. Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc. Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc. Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc. Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc. Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信