Ya A Sliman, N S Samoylenkova, O M Antipova, V A Brylev, D A Veryutin, K A Sapozhnikova, A I Alekseeva, I N Pronin, A M Kopylov, G V Pavlova
{"title":"[Covalently conjugated DNA aptamer with doxorubicin as in vitro model for effective targeted drug delivery to human glioblastoma tumor cells].","authors":"Ya A Sliman, N S Samoylenkova, O M Antipova, V A Brylev, D A Veryutin, K A Sapozhnikova, A I Alekseeva, I N Pronin, A M Kopylov, G V Pavlova","doi":"10.17116/neiro20248801148","DOIUrl":null,"url":null,"abstract":"<p><p>Targeted delivery of chemotherapeutic agents with aptamers is a very effective method increasing therapeutic index compared to non-targeted drugs.</p><p><strong>Objective: </strong>To study the effectiveness of in vitro therapeutic effect of covalently conjugated GR20 DNA aptamer with doxorubicin on glioblastoma cells compared to reference culture of human fibroblasts.</p><p><strong>Material and methods: </strong>A Sus/fP2 cell culture was obtained from glioblastoma tissue sample to analyze the effectiveness of conjugate. A linear culture of human dermal fibroblasts (mesenchymal stem cells) DF1 was used as a control. To assess antiproliferative activity of covalently conjugated GR20 aptamer with doxorubicin, we used the MTS test. The Cell Index was measured using the xCelligence S16 cell analyzer assessing viability of cell cultures by recording changes in real time.</p><p><strong>Results: </strong>Human glioblastoma Sus/fP2 cells reduce own proliferative potential by 80% when exposed to doxorubicin (0.5 µM, 72 hours, MTS test), by 9% when exposed to GR20 aptamer (10 µM, 72 hours, MTS test) and by 26% when exposed to covalently conjugated DOX-GR20 (0.5 µM, 72 hours, MTS test). A long-term study of proliferative potential of Sus/fP2 cells on the xCelligence S16 analyzer revealed a significant decrease in the number of cells under the effect of doxorubicin and covalently conjugated DOX-GR20. Effectiveness of covalently conjugated DOX-GR20 is halved. GR20 aptamer at a concentration of 10 μM and its conjugate with doxorubicin DOX-GR20 at a concentration of 1 μM have no negative effect on cells of the control culture of DF1 fibroblasts, while doxorubicin is toxic for these cells. MTS test and xCelligence S16 cell analyzer found no decrease in metabolic activity of DF1 cells and their ability to proliferate.</p><p><strong>Conclusion: </strong>We established obvious antiproliferative effect of covalent conjugate DOX-GR20 on continuous human glioblastoma cell culture Sus/fP2 without toxic effect on the reference culture (dermal fibroblasts DF1).</p>","PeriodicalId":24032,"journal":{"name":"Zhurnal voprosy neirokhirurgii imeni N. N. Burdenko","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhurnal voprosy neirokhirurgii imeni N. N. Burdenko","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17116/neiro20248801148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Targeted delivery of chemotherapeutic agents with aptamers is a very effective method increasing therapeutic index compared to non-targeted drugs.
Objective: To study the effectiveness of in vitro therapeutic effect of covalently conjugated GR20 DNA aptamer with doxorubicin on glioblastoma cells compared to reference culture of human fibroblasts.
Material and methods: A Sus/fP2 cell culture was obtained from glioblastoma tissue sample to analyze the effectiveness of conjugate. A linear culture of human dermal fibroblasts (mesenchymal stem cells) DF1 was used as a control. To assess antiproliferative activity of covalently conjugated GR20 aptamer with doxorubicin, we used the MTS test. The Cell Index was measured using the xCelligence S16 cell analyzer assessing viability of cell cultures by recording changes in real time.
Results: Human glioblastoma Sus/fP2 cells reduce own proliferative potential by 80% when exposed to doxorubicin (0.5 µM, 72 hours, MTS test), by 9% when exposed to GR20 aptamer (10 µM, 72 hours, MTS test) and by 26% when exposed to covalently conjugated DOX-GR20 (0.5 µM, 72 hours, MTS test). A long-term study of proliferative potential of Sus/fP2 cells on the xCelligence S16 analyzer revealed a significant decrease in the number of cells under the effect of doxorubicin and covalently conjugated DOX-GR20. Effectiveness of covalently conjugated DOX-GR20 is halved. GR20 aptamer at a concentration of 10 μM and its conjugate with doxorubicin DOX-GR20 at a concentration of 1 μM have no negative effect on cells of the control culture of DF1 fibroblasts, while doxorubicin is toxic for these cells. MTS test and xCelligence S16 cell analyzer found no decrease in metabolic activity of DF1 cells and their ability to proliferate.
Conclusion: We established obvious antiproliferative effect of covalent conjugate DOX-GR20 on continuous human glioblastoma cell culture Sus/fP2 without toxic effect on the reference culture (dermal fibroblasts DF1).
期刊介绍:
Scientific and practical peer-reviewed journal. This publication covers the theoretical, practical and organizational problems of modern neurosurgery, the latest advances in the treatment of various diseases of the central and peripheral nervous system. Founded in 1937. English version of the journal translates from Russian version since #1/2013.