Diphenyl Diselenide Attenuates Mitochondrial Damage During Initial Hypoxia and Enhances Resistance to Recurrent Hypoxia.

IF 2.9 3区 医学 Q2 NEUROSCIENCES
Guilherme S Rieder, Marcos M Braga, Ben Hur M Mussulini, Emerson S Silva, Gabriela Lazzarotto, Emerson André Casali, Diogo L Oliveira, Jeferson L Franco, Diogo O G Souza, João Batista T Rocha
{"title":"Diphenyl Diselenide Attenuates Mitochondrial Damage During Initial Hypoxia and Enhances Resistance to Recurrent Hypoxia.","authors":"Guilherme S Rieder, Marcos M Braga, Ben Hur M Mussulini, Emerson S Silva, Gabriela Lazzarotto, Emerson André Casali, Diogo L Oliveira, Jeferson L Franco, Diogo O G Souza, João Batista T Rocha","doi":"10.1007/s12640-024-00691-6","DOIUrl":null,"url":null,"abstract":"<p><p>Hypoxia plays a significant role in the development of various cerebral diseases, many of which are associated with the potential risk of recurrence due to mitochondrial damage. Conventional drug treatments are not always effective for hypoxia-related brain diseases, necessitating the exploration of alternative compounds. In this study, we investigated the potential of diphenyl diselenide [(PhSe)<sub>2</sub>] to ameliorate locomotor impairments and mitigate brain mitochondrial dysfunction in zebrafish subjected to hypoxia. Additionally, we explored whether these improvements could confer resistance to recurrent hypoxia. Through a screening process, an appropriate dose of (PhSe)<sub>2</sub> was determined, and animals exposed to hypoxia received a single intraperitoneal injection of 100 mg/kg of the compound or vehicle. After 1 h from the injection, evaluations were conducted on locomotor deficits, (PhSe)<sub>2</sub> content, mitochondrial electron transport system, and mitochondrial viability in the brain. The animals were subsequently exposed to recurrent hypoxia to assess the latency time to hypoxia symptoms. The findings revealed that (PhSe)<sub>2</sub> effectively crossed the blood-brain barrier, attenuated locomotor deficits induced by hypoxia, and improved brain mitochondrial respiration by modulating complex III. Furthermore, it enhanced mitochondrial viability in the telencephalon, contributing to greater resistance to recurrent hypoxia. These results demonstrate the beneficial effects of (PhSe)<sub>2</sub> on both hypoxia and recurrent hypoxia, with cerebral mitochondria being a critical target of its action. Considering the involvement of brain hypoxia in numerous pathologies, (PhSe)<sub>2</sub> should be further tested to determine its effectiveness as a potential treatment for hypoxia-related brain diseases.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 1","pages":"13"},"PeriodicalIF":2.9000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicity Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12640-024-00691-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Hypoxia plays a significant role in the development of various cerebral diseases, many of which are associated with the potential risk of recurrence due to mitochondrial damage. Conventional drug treatments are not always effective for hypoxia-related brain diseases, necessitating the exploration of alternative compounds. In this study, we investigated the potential of diphenyl diselenide [(PhSe)2] to ameliorate locomotor impairments and mitigate brain mitochondrial dysfunction in zebrafish subjected to hypoxia. Additionally, we explored whether these improvements could confer resistance to recurrent hypoxia. Through a screening process, an appropriate dose of (PhSe)2 was determined, and animals exposed to hypoxia received a single intraperitoneal injection of 100 mg/kg of the compound or vehicle. After 1 h from the injection, evaluations were conducted on locomotor deficits, (PhSe)2 content, mitochondrial electron transport system, and mitochondrial viability in the brain. The animals were subsequently exposed to recurrent hypoxia to assess the latency time to hypoxia symptoms. The findings revealed that (PhSe)2 effectively crossed the blood-brain barrier, attenuated locomotor deficits induced by hypoxia, and improved brain mitochondrial respiration by modulating complex III. Furthermore, it enhanced mitochondrial viability in the telencephalon, contributing to greater resistance to recurrent hypoxia. These results demonstrate the beneficial effects of (PhSe)2 on both hypoxia and recurrent hypoxia, with cerebral mitochondria being a critical target of its action. Considering the involvement of brain hypoxia in numerous pathologies, (PhSe)2 should be further tested to determine its effectiveness as a potential treatment for hypoxia-related brain diseases.

Abstract Image

二苯基二硒化物可减轻初始缺氧时的线粒体损伤并增强对复发性缺氧的抵抗力
缺氧在各种脑部疾病的发病过程中起着重要作用,其中许多疾病都与线粒体损伤导致的潜在复发风险有关。传统的药物治疗对缺氧相关的脑部疾病并不总是有效,因此有必要探索替代化合物。在这项研究中,我们调查了二苯基二硒化物[(PhSe)2]改善缺氧斑马鱼运动障碍和缓解脑线粒体功能障碍的潜力。此外,我们还探讨了这些改善是否能赋予斑马鱼对反复缺氧的抵抗力。通过筛选过程,我们确定了 (PhSe)2 的适当剂量,暴露于缺氧的动物腹腔注射一次 100 毫克/千克的化合物或载体。注射 1 小时后,对动物的运动障碍、(PhSe)2 含量、线粒体电子传递系统和脑内线粒体活力进行评估。随后将动物置于反复缺氧环境中,以评估缺氧症状的潜伏时间。研究结果表明,(PhSe)2 能有效穿过血脑屏障,减轻缺氧引起的运动障碍,并通过调节复合体 III 改善脑线粒体呼吸。此外,它还提高了端脑线粒体的活力,从而增强了对反复缺氧的抵抗力。这些结果表明,(PhSe)2 对缺氧和复发性缺氧都有益处,而大脑线粒体是其作用的关键靶点。考虑到脑缺氧与多种病症的关系,(PhSe)2 作为一种治疗缺氧相关脑部疾病的潜在药物,其有效性有待进一步检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurotoxicity Research
Neurotoxicity Research 医学-神经科学
CiteScore
7.70
自引率
5.40%
发文量
164
审稿时长
6-12 weeks
期刊介绍: Neurotoxicity Research is an international, interdisciplinary broad-based journal for reporting both basic and clinical research on classical neurotoxicity effects and mechanisms associated with neurodegeneration, necrosis, neuronal apoptosis, nerve regeneration, neurotrophin mechanisms, and topics related to these themes. Published papers have focused on: NEURODEGENERATION and INJURY Neuropathologies Neuronal apoptosis Neuronal necrosis Neural death processes (anatomical, histochemical, neurochemical) Neurodegenerative Disorders Neural Effects of Substances of Abuse NERVE REGENERATION and RESPONSES TO INJURY Neural Adaptations Neurotrophin mechanisms and actions NEURO(CYTO)TOXICITY PROCESSES and NEUROPROTECTION Excitatory amino acids Neurotoxins, endogenous and synthetic Reactive oxygen (nitrogen) species Neuroprotection by endogenous and exogenous agents Papers on related themes are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信