{"title":"Survey and Review","authors":"Marlis Hochbruck","doi":"10.1137/24n975827","DOIUrl":null,"url":null,"abstract":"SIAM Review, Volume 66, Issue 1, Page 1-1, February 2024. <br/> Numerical methods for partial differential equations can only be successful if their numerical solutions reflect fundamental properties of the physical solution of the respective PDE. For convection-diffusion equations, the conservation of some specific scalar quantities is crucial. When physical solutions satisfy maximum principles representing physical bounds, then the numerical solutions should respect the same bounds. In a mathematical setting, this requirement is known as the discrete maximum principle (DMP). Discretizations which fail to fulfill the DMP are prone to numerical solutions with unphysical values, e.g., spurious oscillations. However, when convection largely dominates diffusion, many discretization methods do not satisfy a DMP. In the only article of the Survey and Review section of this issue, “Finite Element Methods Respecting the Discrete Maximum Principle for Convection-Diffusion Equations,” Gabriel R. Barrenechea, Volker John, and Petr Knobloch study and analyze finite element methods that succeed in complying with DMP while providing accurate numerical solutions at the same time. This is a nontrivial task and, thus, even for the steady-state problem there are only a few such discretizations, all of them nonlinear. Most of these methods have been developed quite recently, so that the presentation highlights the state of the art and spotlights the huge progress accomplished in recent years. The goal of the paper consists in providing a survey on finite element methods that satisfy local or global DMPs for linear elliptic or parabolic problems. It is worth reading for a large audience.","PeriodicalId":49525,"journal":{"name":"SIAM Review","volume":"9 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Review","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24n975827","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Review, Volume 66, Issue 1, Page 1-1, February 2024. Numerical methods for partial differential equations can only be successful if their numerical solutions reflect fundamental properties of the physical solution of the respective PDE. For convection-diffusion equations, the conservation of some specific scalar quantities is crucial. When physical solutions satisfy maximum principles representing physical bounds, then the numerical solutions should respect the same bounds. In a mathematical setting, this requirement is known as the discrete maximum principle (DMP). Discretizations which fail to fulfill the DMP are prone to numerical solutions with unphysical values, e.g., spurious oscillations. However, when convection largely dominates diffusion, many discretization methods do not satisfy a DMP. In the only article of the Survey and Review section of this issue, “Finite Element Methods Respecting the Discrete Maximum Principle for Convection-Diffusion Equations,” Gabriel R. Barrenechea, Volker John, and Petr Knobloch study and analyze finite element methods that succeed in complying with DMP while providing accurate numerical solutions at the same time. This is a nontrivial task and, thus, even for the steady-state problem there are only a few such discretizations, all of them nonlinear. Most of these methods have been developed quite recently, so that the presentation highlights the state of the art and spotlights the huge progress accomplished in recent years. The goal of the paper consists in providing a survey on finite element methods that satisfy local or global DMPs for linear elliptic or parabolic problems. It is worth reading for a large audience.
期刊介绍:
Survey and Review feature papers that provide an integrative and current viewpoint on important topics in applied or computational mathematics and scientific computing. These papers aim to offer a comprehensive perspective on the subject matter.
Research Spotlights publish concise research papers in applied and computational mathematics that are of interest to a wide range of readers in SIAM Review. The papers in this section present innovative ideas that are clearly explained and motivated. They stand out from regular publications in specific SIAM journals due to their accessibility and potential for widespread and long-lasting influence.