Eva-Maria Walz, Alexander Henzi, Johanna Ziegel, Tilmann Gneiting
{"title":"Easy Uncertainty Quantification (EasyUQ): Generating Predictive Distributions from Single-Valued Model Output","authors":"Eva-Maria Walz, Alexander Henzi, Johanna Ziegel, Tilmann Gneiting","doi":"10.1137/22m1541915","DOIUrl":null,"url":null,"abstract":"SIAM Review, Volume 66, Issue 1, Page 91-122, February 2024. <br/> How can we quantify uncertainty if our favorite computational tool---be it a numerical, statistical, or machine learning approach, or just any computer model---provides single-valued output only? In this article, we introduce the Easy Uncertainty Quantification (EasyUQ) technique, which transforms real-valued model output into calibrated statistical distributions, based solely on training data of model output--outcome pairs, without any need to access model input. In its basic form, EasyUQ is a special case of the recently introduced isotonic distributional regression (IDR) technique that leverages the pool-adjacent-violators algorithm for nonparametric isotonic regression. EasyUQ yields discrete predictive distributions that are calibrated and optimal in finite samples, subject to stochastic monotonicity. The workflow is fully automated, without any need for tuning. The Smooth EasyUQ approach supplements IDR with kernel smoothing, to yield continuous predictive distributions that preserve key properties of the basic form, including both stochastic monotonicity with respect to the original model output and asymptotic consistency. For the selection of kernel parameters, we introduce multiple one-fit grid search, a computationally much less demanding approximation to leave-one-out cross-validation. We use simulation examples and forecast data from weather prediction to illustrate the techniques. In a study of benchmark problems from machine learning, we show how EasyUQ and Smooth EasyUQ can be integrated into the workflow of neural network learning and hyperparameter tuning, and we find EasyUQ to be competitive with conformal prediction as well as more elaborate input-based approaches.","PeriodicalId":49525,"journal":{"name":"SIAM Review","volume":"18 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Review","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1541915","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Review, Volume 66, Issue 1, Page 91-122, February 2024. How can we quantify uncertainty if our favorite computational tool---be it a numerical, statistical, or machine learning approach, or just any computer model---provides single-valued output only? In this article, we introduce the Easy Uncertainty Quantification (EasyUQ) technique, which transforms real-valued model output into calibrated statistical distributions, based solely on training data of model output--outcome pairs, without any need to access model input. In its basic form, EasyUQ is a special case of the recently introduced isotonic distributional regression (IDR) technique that leverages the pool-adjacent-violators algorithm for nonparametric isotonic regression. EasyUQ yields discrete predictive distributions that are calibrated and optimal in finite samples, subject to stochastic monotonicity. The workflow is fully automated, without any need for tuning. The Smooth EasyUQ approach supplements IDR with kernel smoothing, to yield continuous predictive distributions that preserve key properties of the basic form, including both stochastic monotonicity with respect to the original model output and asymptotic consistency. For the selection of kernel parameters, we introduce multiple one-fit grid search, a computationally much less demanding approximation to leave-one-out cross-validation. We use simulation examples and forecast data from weather prediction to illustrate the techniques. In a study of benchmark problems from machine learning, we show how EasyUQ and Smooth EasyUQ can be integrated into the workflow of neural network learning and hyperparameter tuning, and we find EasyUQ to be competitive with conformal prediction as well as more elaborate input-based approaches.
期刊介绍:
Survey and Review feature papers that provide an integrative and current viewpoint on important topics in applied or computational mathematics and scientific computing. These papers aim to offer a comprehensive perspective on the subject matter.
Research Spotlights publish concise research papers in applied and computational mathematics that are of interest to a wide range of readers in SIAM Review. The papers in this section present innovative ideas that are clearly explained and motivated. They stand out from regular publications in specific SIAM journals due to their accessibility and potential for widespread and long-lasting influence.