Nicholas J. Collins, Taylor S. Campbell, Aimee L. Bozeman, Alleyna C. Martes, Sydney E. Ross, Tiffany S. Doherty, Michele R. Brumley, Tania L. Roth
{"title":"Epigenetic processes associated with neonatal spinal transection","authors":"Nicholas J. Collins, Taylor S. Campbell, Aimee L. Bozeman, Alleyna C. Martes, Sydney E. Ross, Tiffany S. Doherty, Michele R. Brumley, Tania L. Roth","doi":"10.1002/dev.22466","DOIUrl":null,"url":null,"abstract":"<p>In early development, the spinal cord in healthy or disease states displays remarkable activity-dependent changes in plasticity, which may be in part due to the increased activity of brain derived neurotrophic factor (BDNF). Indeed, BDNF delivery has been efficacious in partially ameliorating many of the neurobiological and behavioral consequences of spinal cord injury (SCI), making elucidating the role of BDNF in the normative developing and injured spinal cord a critical research focus. Recent work in our laboratory provided evidence for aberrant global and locus-specific epigenetic changes in methylation of the <i>Bdnf</i> gene as a consequence of SCI. In the present study, animals underwent thoracic lesions on P1, with cervical and lumbar tissue being later collected on P7, P14, and P21. Levels of <i>Bdnf</i> expression and methylation (exon IX and exon IV), in addition to global methylation levels were quantified at each timepoint. Results indicated locus-specific reductions of <i>Bdnf</i> expression that was accompanied by a parallel increase in methylation caudal to the injury site, with animals displaying increased <i>Bdnf</i> expression at the P14 timepoint. Together, these findings suggest that epigenetic activity of the <i>Bdnf</i> gene may act as biomarker in the etiology and intervention effort efficacy following SCI.</p>","PeriodicalId":11086,"journal":{"name":"Developmental psychobiology","volume":"66 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental psychobiology","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dev.22466","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In early development, the spinal cord in healthy or disease states displays remarkable activity-dependent changes in plasticity, which may be in part due to the increased activity of brain derived neurotrophic factor (BDNF). Indeed, BDNF delivery has been efficacious in partially ameliorating many of the neurobiological and behavioral consequences of spinal cord injury (SCI), making elucidating the role of BDNF in the normative developing and injured spinal cord a critical research focus. Recent work in our laboratory provided evidence for aberrant global and locus-specific epigenetic changes in methylation of the Bdnf gene as a consequence of SCI. In the present study, animals underwent thoracic lesions on P1, with cervical and lumbar tissue being later collected on P7, P14, and P21. Levels of Bdnf expression and methylation (exon IX and exon IV), in addition to global methylation levels were quantified at each timepoint. Results indicated locus-specific reductions of Bdnf expression that was accompanied by a parallel increase in methylation caudal to the injury site, with animals displaying increased Bdnf expression at the P14 timepoint. Together, these findings suggest that epigenetic activity of the Bdnf gene may act as biomarker in the etiology and intervention effort efficacy following SCI.
期刊介绍:
Developmental Psychobiology is a peer-reviewed journal that publishes original research papers from the disciplines of psychology, biology, neuroscience, and medicine that contribute to an understanding of behavior development. Research that focuses on development in the embryo/fetus, neonate, juvenile, or adult animal and multidisciplinary research that relates behavioral development to anatomy, physiology, biochemistry, genetics, or evolution is appropriate. The journal represents a broad phylogenetic perspective on behavior development by publishing studies of invertebrates, fish, birds, humans, and other animals. The journal publishes experimental and descriptive studies whether carried out in the laboratory or field.
The journal also publishes review articles and theoretical papers that make important conceptual contributions. Special dedicated issues of Developmental Psychobiology , consisting of invited papers on a topic of general interest, may be arranged with the Editor-in-Chief.
Developmental Psychobiology also publishes Letters to the Editor, which discuss issues of general interest or material published in the journal. Letters discussing published material may correct errors, provide clarification, or offer a different point of view. Authors should consult the editors on the preparation of these contributions.