Small molecule inhibition of RNA binding proteins in haematologic cancer.

IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
RNA Biology Pub Date : 2024-01-01 Epub Date: 2024-02-08 DOI:10.1080/15476286.2024.2303558
Amit K Jaiswal, Michelle L Thaxton, Georgia M Scherer, Jacob P Sorrentino, Neil K Garg, Dinesh S Rao
{"title":"Small molecule inhibition of RNA binding proteins in haematologic cancer.","authors":"Amit K Jaiswal, Michelle L Thaxton, Georgia M Scherer, Jacob P Sorrentino, Neil K Garg, Dinesh S Rao","doi":"10.1080/15476286.2024.2303558","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, advances in biomedicine have revealed an important role for post-transcriptional mechanisms of gene expression regulation in pathologic conditions. In cancer in general and leukaemia specifically, RNA binding proteins have emerged as important regulator of RNA homoeostasis that are often dysregulated in the disease state. Having established the importance of these pathogenetic mechanisms, there have been a number of efforts to target RNA binding proteins using oligonucleotide-based strategies, as well as with small organic molecules. The field is at an exciting inflection point with the convergence of biomedical knowledge, small molecule screening strategies and improved chemical methods for synthesis and construction of sophisticated small molecules. Here, we review the mechanisms of post-transcriptional gene regulation, specifically in leukaemia, current small-molecule based efforts to target RNA binding proteins, and future prospects.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10857685/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15476286.2024.2303558","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, advances in biomedicine have revealed an important role for post-transcriptional mechanisms of gene expression regulation in pathologic conditions. In cancer in general and leukaemia specifically, RNA binding proteins have emerged as important regulator of RNA homoeostasis that are often dysregulated in the disease state. Having established the importance of these pathogenetic mechanisms, there have been a number of efforts to target RNA binding proteins using oligonucleotide-based strategies, as well as with small organic molecules. The field is at an exciting inflection point with the convergence of biomedical knowledge, small molecule screening strategies and improved chemical methods for synthesis and construction of sophisticated small molecules. Here, we review the mechanisms of post-transcriptional gene regulation, specifically in leukaemia, current small-molecule based efforts to target RNA binding proteins, and future prospects.

小分子抑制血液肿瘤中的 RNA 结合蛋白。
近年来,生物医学的进步揭示了转录后基因表达调控机制在病理状态下的重要作用。在癌症,特别是白血病中,RNA 结合蛋白已成为 RNA 平衡的重要调节因子,在疾病状态下往往会出现失调。在确定了这些致病机制的重要性之后,人们已经做出了许多努力,利用基于寡核苷酸的策略以及有机小分子来靶向 RNA 结合蛋白。随着生物医学知识、小分子筛选策略以及用于合成和构建复杂小分子的化学方法的改进,该领域正处于一个令人兴奋的拐点。在此,我们将回顾转录后基因调控(尤其是白血病)的机制、目前基于小分子靶向 RNA 结合蛋白的研究工作以及未来前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
RNA Biology
RNA Biology 生物-生化与分子生物学
CiteScore
8.60
自引率
0.00%
发文量
82
审稿时长
1 months
期刊介绍: RNA has played a central role in all cellular processes since the beginning of life: decoding the genome, regulating gene expression, mediating molecular interactions, catalyzing chemical reactions. RNA Biology, as a leading journal in the field, provides a platform for presenting and discussing cutting-edge RNA research. RNA Biology brings together a multidisciplinary community of scientists working in the areas of: Transcription and splicing Post-transcriptional regulation of gene expression Non-coding RNAs RNA localization Translation and catalysis by RNA Structural biology Bioinformatics RNA in disease and therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信