{"title":"Adolescent intermittent ethanol use in male rats do not change cerebellar cell numbers but initiate astroglial reaction","authors":"Nurhan Çon, Sevcan Mercan, Asuman Küçüköner, Nüket Çalişkan","doi":"10.1002/jdn.10317","DOIUrl":null,"url":null,"abstract":"<p>Alcohol consumption during adolescence causes negative structural changes in the cerebellum and can lead to cognitive and motor skill disorders. Unfortunately, the age at which individuals begin drinking alcohol has decreased in recent years, which has drawn attention to the effects of alcohol on neurological changes during preadolescence. In this study, we investigated the effects of adolescent intermittent ethanol (AIE) exposure on the cellular composition of the cerebellum in male rats, particularly when alcohol consumption begins early. The male rats received eight doses of intermittent intraperitoneal injection of 25% (v/v) ethanol (3 g/kg) or saline from postnatal days (PND) 25 to PND 38. In rats, 28–42 days old corresponds to 10–18 years old in humans. Two hours after the last injection, the cells, neurons, and non-neuronal cells in the cerebellum were immunocytochemically labeled and the total numbers of related cells were calculated using the Isotropic Fractionator method. We found that AIE exposure does not change the cell numbers of the cerebellum in the short term, but it does activate astrocytes in the white matter of the cerebellum. These findings suggest that alcohol use during adolescence impairs the innate immune system and negatively affects brain plasticity.</p>","PeriodicalId":13914,"journal":{"name":"International Journal of Developmental Neuroscience","volume":"84 3","pages":"177-189"},"PeriodicalIF":1.7000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Developmental Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jdn.10317","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alcohol consumption during adolescence causes negative structural changes in the cerebellum and can lead to cognitive and motor skill disorders. Unfortunately, the age at which individuals begin drinking alcohol has decreased in recent years, which has drawn attention to the effects of alcohol on neurological changes during preadolescence. In this study, we investigated the effects of adolescent intermittent ethanol (AIE) exposure on the cellular composition of the cerebellum in male rats, particularly when alcohol consumption begins early. The male rats received eight doses of intermittent intraperitoneal injection of 25% (v/v) ethanol (3 g/kg) or saline from postnatal days (PND) 25 to PND 38. In rats, 28–42 days old corresponds to 10–18 years old in humans. Two hours after the last injection, the cells, neurons, and non-neuronal cells in the cerebellum were immunocytochemically labeled and the total numbers of related cells were calculated using the Isotropic Fractionator method. We found that AIE exposure does not change the cell numbers of the cerebellum in the short term, but it does activate astrocytes in the white matter of the cerebellum. These findings suggest that alcohol use during adolescence impairs the innate immune system and negatively affects brain plasticity.
期刊介绍:
International Journal of Developmental Neuroscience publishes original research articles and critical review papers on all fundamental and clinical aspects of nervous system development, renewal and regeneration, as well as on the effects of genetic and environmental perturbations of brain development and homeostasis leading to neurodevelopmental disorders and neurological conditions. Studies describing the involvement of stem cells in nervous system maintenance and disease (including brain tumours), stem cell-based approaches for the investigation of neurodegenerative diseases, roles of neuroinflammation in development and disease, and neuroevolution are also encouraged. Investigations using molecular, cellular, physiological, genetic and epigenetic approaches in model systems ranging from simple invertebrates to human iPSC-based 2D and 3D models are encouraged, as are studies using experimental models that provide behavioural or evolutionary insights. The journal also publishes Special Issues dealing with topics at the cutting edge of research edited by Guest Editors appointed by the Editor in Chief. A major aim of the journal is to facilitate the transfer of fundamental studies of nervous system development, maintenance, and disease to clinical applications. The journal thus intends to disseminate valuable information for both biologists and physicians. International Journal of Developmental Neuroscience is owned and supported by The International Society for Developmental Neuroscience (ISDN), an organization of scientists interested in advancing developmental neuroscience research in the broadest sense.