{"title":"Ambulatory seizure detection.","authors":"Adriano Bernini, Jonathan Dan, Philippe Ryvlin","doi":"10.1097/WCO.0000000000001248","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>To review recent advances in the field of seizure detection in ambulatory patients with epilepsy.</p><p><strong>Recent findings: </strong>Recent studies have shown that wrist or arm wearable sensors, using 3D-accelerometry, electrodermal activity or photoplethysmography, in isolation or in combination, can reliably detect focal-to-bilateral and generalized tonic-clonic seizures (GTCS), with a sensitivity over 90%, and false alarm rates varying from 0.1 to 1.2 per day. A headband EEG has also demonstrated a high sensitivity for detecting and help monitoring generalized absence seizures. In contrast, no appropriate solution is yet available to detect focal seizures, though some promising findings were reported using ECG-based heart rate variability biomarkers and subcutaneous EEG.</p><p><strong>Summary: </strong>Several FDA and/or EU-certified solutions are available to detect GTCS and trigger an alarm with acceptable rates of false alarms. However, data are still missing regarding the impact of such intervention on patients' safety. Noninvasive solutions to reliably detect focal seizures in ambulatory patients, based on either EEG or non-EEG biosignals, remain to be developed. To this end, a number of challenges need to be addressed, including the performance, but also the transparency and interpretability of machine learning algorithms.</p>","PeriodicalId":11059,"journal":{"name":"Current Opinion in Neurology","volume":" ","pages":"99-104"},"PeriodicalIF":4.1000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/WCO.0000000000001248","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose of review: To review recent advances in the field of seizure detection in ambulatory patients with epilepsy.
Recent findings: Recent studies have shown that wrist or arm wearable sensors, using 3D-accelerometry, electrodermal activity or photoplethysmography, in isolation or in combination, can reliably detect focal-to-bilateral and generalized tonic-clonic seizures (GTCS), with a sensitivity over 90%, and false alarm rates varying from 0.1 to 1.2 per day. A headband EEG has also demonstrated a high sensitivity for detecting and help monitoring generalized absence seizures. In contrast, no appropriate solution is yet available to detect focal seizures, though some promising findings were reported using ECG-based heart rate variability biomarkers and subcutaneous EEG.
Summary: Several FDA and/or EU-certified solutions are available to detect GTCS and trigger an alarm with acceptable rates of false alarms. However, data are still missing regarding the impact of such intervention on patients' safety. Noninvasive solutions to reliably detect focal seizures in ambulatory patients, based on either EEG or non-EEG biosignals, remain to be developed. To this end, a number of challenges need to be addressed, including the performance, but also the transparency and interpretability of machine learning algorithms.
期刊介绍:
Current Opinion in Neurology is a highly regarded journal offering insightful editorials and on-the-mark invited reviews; covering key subjects such as cerebrovascular disease, developmental disorders, neuroimaging and demyelinating diseases. Published bimonthly, each issue of Current Opinion in Neurology introduces world renowned guest editors and internationally recognized academics within the neurology field, delivering a widespread selection of expert assessments on the latest developments from the most recent literature.