{"title":"Description of the first cultured representative of “Candidatus Synoicihabitans” genus, isolated from deep-sea sediment of South China Sea","authors":"Tariq Ahmad , Sidra Erum Ishaq , Lewen Liang , Jialin Hou , Ruize Xie , Yijing Dong , Tiantian Yu , Fengping Wang","doi":"10.1016/j.syapm.2024.126490","DOIUrl":null,"url":null,"abstract":"<div><p>In this study we describe the first cultured representative of <em>Candidatus</em> Synoicihabitans genus, a novel strain designated as LMO-M01<sup>T</sup>, isolated from deep-sea sediment of South China Sea. This bacterium is a facultative aerobe, Gram-negative, non-motile, and has a globular-shaped morphology, with light greenish, small, and circular colonies. Analysis of the 16S rRNA gene sequences of strain LMO-M01<sup>T</sup> showed less than 93% similarity to its closest cultured members. Furthermore, employing advanced phylogenomic methods such as comparative genome analysis, average nucleotide identity (ANI), average amino acids identity (AAI), and digital DNA-DNA hybridization (dDDH), placed this novel species within the candidatus genus Synoicihabitans of the family <em>Opitutaceae</em>, Phylum <em>Verrucomicrobiota</em>. The genomic analysis of strain LMO-M01<sup>T</sup> revealed 175 genes, encoding putative carbohydrate-active enzymes. This suggests its metabolic potential to degrade and utilize complex polysaccharides, indicating a significant role in carbon cycling and nutrient turnover in deep-sea sediment. In addition, the strain’s physiological capacity to utilize diverse biopolymers such as lignin, xylan, starch, and agar as sole carbon source opens up possibilities for sustainable energy production and environmental remediation. Moreover, the genome sequence of this newly isolated strain has been identified across diverse ecosystems, including marine sediment, fresh water, coral, soil, plants, and activated sludge highlighting its ecological significance and adaptability to various environments. The recovery of strain LMO-M01<sup>T</sup> holds promise for taxonomical, ecological and biotechnological applications. Based on the polyphasic data, we propose that this ecologically important strain LMO-M01<sup>T</sup> represents a novel genus (previously <em>Candidatus</em>) within the family <em>Opitutaceae</em> of phylum <em>Verrucomicrobiota</em>, for which the name <em>Synoicihabitans lomoniglobus</em> gen. nov., sp. nov. was proposed. The type of strain is LMO-M01<sup>T</sup> (= CGMCC 1.61593<sup>T</sup> = KCTC 92913<sup>T</sup>).</p></div>","PeriodicalId":22124,"journal":{"name":"Systematic and applied microbiology","volume":"47 2","pages":"Article 126490"},"PeriodicalIF":3.3000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic and applied microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723202024000043","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study we describe the first cultured representative of Candidatus Synoicihabitans genus, a novel strain designated as LMO-M01T, isolated from deep-sea sediment of South China Sea. This bacterium is a facultative aerobe, Gram-negative, non-motile, and has a globular-shaped morphology, with light greenish, small, and circular colonies. Analysis of the 16S rRNA gene sequences of strain LMO-M01T showed less than 93% similarity to its closest cultured members. Furthermore, employing advanced phylogenomic methods such as comparative genome analysis, average nucleotide identity (ANI), average amino acids identity (AAI), and digital DNA-DNA hybridization (dDDH), placed this novel species within the candidatus genus Synoicihabitans of the family Opitutaceae, Phylum Verrucomicrobiota. The genomic analysis of strain LMO-M01T revealed 175 genes, encoding putative carbohydrate-active enzymes. This suggests its metabolic potential to degrade and utilize complex polysaccharides, indicating a significant role in carbon cycling and nutrient turnover in deep-sea sediment. In addition, the strain’s physiological capacity to utilize diverse biopolymers such as lignin, xylan, starch, and agar as sole carbon source opens up possibilities for sustainable energy production and environmental remediation. Moreover, the genome sequence of this newly isolated strain has been identified across diverse ecosystems, including marine sediment, fresh water, coral, soil, plants, and activated sludge highlighting its ecological significance and adaptability to various environments. The recovery of strain LMO-M01T holds promise for taxonomical, ecological and biotechnological applications. Based on the polyphasic data, we propose that this ecologically important strain LMO-M01T represents a novel genus (previously Candidatus) within the family Opitutaceae of phylum Verrucomicrobiota, for which the name Synoicihabitans lomoniglobus gen. nov., sp. nov. was proposed. The type of strain is LMO-M01T (= CGMCC 1.61593T = KCTC 92913T).
期刊介绍:
Systematic and Applied Microbiology deals with various aspects of microbial diversity and systematics of prokaryotes. It focuses on Bacteria and Archaea; eukaryotic microorganisms will only be considered in rare cases. The journal perceives a broad understanding of microbial diversity and encourages the submission of manuscripts from the following branches of microbiology: