Enhancing Student Research Experiences with Open Data from the Allen Brain Map.

Kaitlyn Casimo
{"title":"Enhancing Student Research Experiences with Open Data from the Allen Brain Map.","authors":"Kaitlyn Casimo","doi":"10.59390/NWXO4043","DOIUrl":null,"url":null,"abstract":"<p><p>The Allen Brain Map is the main data repository for the Allen Institute for Brain Science, containing big, open datasets commonly used in neuroscience research (Allen Institute for Brain Science, 2022). Open data from the Allen Brain Map can be used to teach core concepts in neuroscience, data analysis methods, and other critical skills and knowledge to neuroscience students. These datasets can be used as the main data source for completely online lab experiences, or analyzed in combination with data students collect themselves. Applications may range in scope and format from a short worksheet used in a single class session to a coding tutorial to a guided independent research project. While open online data cannot fully replace lab experiences for learning techniques, they can be used to expose students to analysis of big data, introduce resources widely used in the field, and teach skills like statistics and coding. This article reviews potential assignment formats where big and open data can be applied, introduces selected popular resources and sample use cases for each, and discusses benefits and limitations of open online data for lab experiences. Some specific applications in the context of distance learning are also detailed.</p>","PeriodicalId":74004,"journal":{"name":"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience","volume":"20 2","pages":"A178-A183"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10653242/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59390/NWXO4043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Allen Brain Map is the main data repository for the Allen Institute for Brain Science, containing big, open datasets commonly used in neuroscience research (Allen Institute for Brain Science, 2022). Open data from the Allen Brain Map can be used to teach core concepts in neuroscience, data analysis methods, and other critical skills and knowledge to neuroscience students. These datasets can be used as the main data source for completely online lab experiences, or analyzed in combination with data students collect themselves. Applications may range in scope and format from a short worksheet used in a single class session to a coding tutorial to a guided independent research project. While open online data cannot fully replace lab experiences for learning techniques, they can be used to expose students to analysis of big data, introduce resources widely used in the field, and teach skills like statistics and coding. This article reviews potential assignment formats where big and open data can be applied, introduces selected popular resources and sample use cases for each, and discusses benefits and limitations of open online data for lab experiences. Some specific applications in the context of distance learning are also detailed.

利用艾伦大脑地图的开放数据增强学生的研究体验。
艾伦大脑地图是艾伦脑科学研究所的主要数据存储库,包含神经科学研究中常用的大型开放数据集(艾伦脑科学研究所,2022 年)。艾伦大脑地图的开放数据可用于向神经科学专业的学生传授神经科学的核心概念、数据分析方法以及其他关键技能和知识。这些数据集可用作完全在线实验体验的主要数据源,也可与学生自己收集的数据结合起来进行分析。应用的范围和形式多种多样,从单节课使用的简短工作表到编码教程,再到有指导的独立研究项目,不一而足。虽然开放式在线数据不能完全取代学习技术的实验室经验,但可以用来让学生接触大数据分析,介绍该领域广泛使用的资源,并教授统计和编码等技能。本文回顾了可以应用大数据和开放数据的潜在作业形式,介绍了选定的流行资源和每种资源的示例用例,并讨论了开放在线数据用于实验体验的好处和局限性。文章还详细介绍了远程学习中的一些具体应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信