{"title":"Short-Chain Acyl-CoA Dehydrogenase as a Therapeutic Target for Cardiac Fibrosis.","authors":"Zhaohui Shu, Jingyun Feng, Lanting Liu, Yingqin Liao, Yuhong Cao, Zhenhua Zeng, Qiuju Huang, Zhonghong Li, Guifang Jin, Zhicheng Yang, Jieyu Xing, Sigui Zhou","doi":"10.1097/FJC.0000000000001544","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Cardiac fibrosis is considered as unbalanced extracellular matrix production and degradation, contributing to heart failure. Short-chain acyl-CoA dehydrogenase (SCAD) negatively regulates pathological cardiac hypertrophy. The purpose of this study was to investigate the possible role of SCAD in cardiac fibrosis. In vivo experiments were performed on spontaneously hypertensive rats (SHR) and SCAD-knockout mice. The cardiac tissues of hypertensive patients with cardiac fibrosis were used for the measurement of SCAD expression. In vitro experiments, with angiotensin II (Ang II), SCAD siRNA and adenovirus-SCAD were performed using cardiac fibroblasts (CFs). SCAD expression was significantly decreased in the left ventricles of SHR. Notably, swim training ameliorated cardiac fibrosis in SHR in association with the elevation of SCAD. The decrease in SCAD protein and mRNA expression levels in SHR CFs were in accordance with those in the left ventricular myocardium of SHR. In addition, SCAD expression was downregulated in CFs treated with Ang II in vitro, and SCAD siRNA interference induced the same changes in cardiac fibrosis as Ang II-treated CFs, while adenovirus-SCAD treatment significantly reduced the Ang II-induced CFs proliferation, alpha smooth muscle actin (α-SMA), and collagen expression. In SHR infected with adenovirus-SCAD, the cardiac fibrosis of the left ventricle was significantly decreased. However, cardiac fibrosis occurred in conventional SCAD-knockout mice. SCAD immunofluorescence intensity of cardiac tissue in hypertensive patients with cardiac fibrosis was lower than that of healthy subjects. Altogether, the current experimental outcomes indicate that SCAD has a negative regulatory effect on cardiac fibrosis and support its potential therapeutic target for suppressing cardiac fibrosis.</p>","PeriodicalId":15212,"journal":{"name":"Journal of Cardiovascular Pharmacology","volume":" ","pages":"410-432"},"PeriodicalIF":2.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/FJC.0000000000001544","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: Cardiac fibrosis is considered as unbalanced extracellular matrix production and degradation, contributing to heart failure. Short-chain acyl-CoA dehydrogenase (SCAD) negatively regulates pathological cardiac hypertrophy. The purpose of this study was to investigate the possible role of SCAD in cardiac fibrosis. In vivo experiments were performed on spontaneously hypertensive rats (SHR) and SCAD-knockout mice. The cardiac tissues of hypertensive patients with cardiac fibrosis were used for the measurement of SCAD expression. In vitro experiments, with angiotensin II (Ang II), SCAD siRNA and adenovirus-SCAD were performed using cardiac fibroblasts (CFs). SCAD expression was significantly decreased in the left ventricles of SHR. Notably, swim training ameliorated cardiac fibrosis in SHR in association with the elevation of SCAD. The decrease in SCAD protein and mRNA expression levels in SHR CFs were in accordance with those in the left ventricular myocardium of SHR. In addition, SCAD expression was downregulated in CFs treated with Ang II in vitro, and SCAD siRNA interference induced the same changes in cardiac fibrosis as Ang II-treated CFs, while adenovirus-SCAD treatment significantly reduced the Ang II-induced CFs proliferation, alpha smooth muscle actin (α-SMA), and collagen expression. In SHR infected with adenovirus-SCAD, the cardiac fibrosis of the left ventricle was significantly decreased. However, cardiac fibrosis occurred in conventional SCAD-knockout mice. SCAD immunofluorescence intensity of cardiac tissue in hypertensive patients with cardiac fibrosis was lower than that of healthy subjects. Altogether, the current experimental outcomes indicate that SCAD has a negative regulatory effect on cardiac fibrosis and support its potential therapeutic target for suppressing cardiac fibrosis.
期刊介绍:
Journal of Cardiovascular Pharmacology is a peer reviewed, multidisciplinary journal that publishes original articles and pertinent review articles on basic and clinical aspects of cardiovascular pharmacology. The Journal encourages submission in all aspects of cardiovascular pharmacology/medicine including, but not limited to: stroke, kidney disease, lipid disorders, diabetes, systemic and pulmonary hypertension, cancer angiogenesis, neural and hormonal control of the circulation, sepsis, neurodegenerative diseases with a vascular component, cardiac and vascular remodeling, heart failure, angina, anticoagulants/antiplatelet agents, drugs/agents that affect vascular smooth muscle, and arrhythmias.
Appropriate subjects include new drug development and evaluation, physiological and pharmacological bases of drug action, metabolism, drug interactions and side effects, application of drugs to gain novel insights into physiology or pathological conditions, clinical results with new and established agents, and novel methods. The focus is on pharmacology in its broadest applications, incorporating not only traditional approaches, but new approaches to the development of pharmacological agents and the prevention and treatment of cardiovascular diseases. Please note that JCVP does not publish work based on biological extracts of mixed and uncertain chemical composition or unknown concentration.