Sayyed Hashem Sajjadi, Shang-Jung Wu, Yahya Rabbani, Vitalijs Zubkovs, Hossein Ahmadzadeh*, Elaheh K. Goharshadi and Ardemis A. Boghossian*,
{"title":"Micropreparative Gel Electrophoresis for Purification of Nanoscale Bioconjugates","authors":"Sayyed Hashem Sajjadi, Shang-Jung Wu, Yahya Rabbani, Vitalijs Zubkovs, Hossein Ahmadzadeh*, Elaheh K. Goharshadi and Ardemis A. Boghossian*, ","doi":"10.1021/acs.bioconjchem.3c00388","DOIUrl":null,"url":null,"abstract":"<p >Conventional techniques for purifying macromolecular conjugates often require complex and costly installments that are inaccessible to most laboratories. In this work, we develop a one-step micropreparative method based on a trilayered polyacrylamide gel electrophoresis (MP-PAGE) setup to purify biological samples, synthetic nanoparticles, as well as biohybrid complexes. We apply this method to recover DNA from a ladder mixture with yields of up to 90%, compared to the 58% yield obtained using the conventional crush-and-soak method. MP-PAGE was also able to isolate enhanced yellow fluorescence protein (EYFP) from crude cell extract with 90% purity, which is comparable to purities achieved through a more complex two-step purification procedure involving size exclusion and immobilized metal-ion affinity chromatography. This technique was further extended to demonstrate size-dependent separation of a commercial mixture of graphene quantum dots (GQDs) into three different fractions with distinct optical properties. Finally, MP-PAGE was used to isolate DNA–EYFP and DNA–GQD bioconjugates from their reaction mixture of DNA and EYFP and GQD precursors, samples that otherwise could not be effectively purified by conventional chromatography. MP-PAGE thus offers a rapid and versatile means of purifying biological and synthetic nanomaterials without the need for specialized equipment.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":"35 2","pages":"154–163"},"PeriodicalIF":3.9000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.bioconjchem.3c00388","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.bioconjchem.3c00388","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional techniques for purifying macromolecular conjugates often require complex and costly installments that are inaccessible to most laboratories. In this work, we develop a one-step micropreparative method based on a trilayered polyacrylamide gel electrophoresis (MP-PAGE) setup to purify biological samples, synthetic nanoparticles, as well as biohybrid complexes. We apply this method to recover DNA from a ladder mixture with yields of up to 90%, compared to the 58% yield obtained using the conventional crush-and-soak method. MP-PAGE was also able to isolate enhanced yellow fluorescence protein (EYFP) from crude cell extract with 90% purity, which is comparable to purities achieved through a more complex two-step purification procedure involving size exclusion and immobilized metal-ion affinity chromatography. This technique was further extended to demonstrate size-dependent separation of a commercial mixture of graphene quantum dots (GQDs) into three different fractions with distinct optical properties. Finally, MP-PAGE was used to isolate DNA–EYFP and DNA–GQD bioconjugates from their reaction mixture of DNA and EYFP and GQD precursors, samples that otherwise could not be effectively purified by conventional chromatography. MP-PAGE thus offers a rapid and versatile means of purifying biological and synthetic nanomaterials without the need for specialized equipment.
期刊介绍:
Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.