Xuanbao Xiang, Lin Zhang, Donghai Sheng, Xiao Yang, Xiaowen Qi, Shutao Wei, Huilian Dai
{"title":"Healable and Recyclable Polyurea-Urethane Elastomer with High Mechanical Robustness, Superhigh Elastic Restorability, and Exceptional Crack Tolerance","authors":"Xuanbao Xiang, Lin Zhang, Donghai Sheng, Xiao Yang, Xiaowen Qi, Shutao Wei, Huilian Dai","doi":"10.1002/adfm.202312571","DOIUrl":null,"url":null,"abstract":"<p>Developing the elastomer materials with high mechanical robustness through simple and environmentally friendly methods poses significant challenges. In this research, a simple solvent-free polymerization method is reported to synthesize a transparent polyurea-urethane elastomer using polycaprolactone (PCL) as soft segment and adjusting various hard segments. The target elastomer successfully combine acceptable mechanical performance and exceptional crack tolerance, whereby the notched samples can readily lift 25000 times (a rarely reported value) its weight. Moreover, the superhigh elastic restorability allow target elastomer recover to its original dimension from elongation over 5 times or to fracture. These results are attained due to the presence of densely and uniformly distributed hard microdomains within the elastomer, leading to effective energy dissipation. Furthermore, owing to the linear structure of the molecular chains and the reversible hydrogen-bonding interactions between the chains, target elastomer can be conveniently healed and recycled under heating conditions. This research can provide a general and feasible strategy for the construction of elastomer materials with exceptional comprehensive properties, and the elastomers are expected to be applied in emerging fields such as protective elements and flexible electronics.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"34 22","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202312571","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Developing the elastomer materials with high mechanical robustness through simple and environmentally friendly methods poses significant challenges. In this research, a simple solvent-free polymerization method is reported to synthesize a transparent polyurea-urethane elastomer using polycaprolactone (PCL) as soft segment and adjusting various hard segments. The target elastomer successfully combine acceptable mechanical performance and exceptional crack tolerance, whereby the notched samples can readily lift 25000 times (a rarely reported value) its weight. Moreover, the superhigh elastic restorability allow target elastomer recover to its original dimension from elongation over 5 times or to fracture. These results are attained due to the presence of densely and uniformly distributed hard microdomains within the elastomer, leading to effective energy dissipation. Furthermore, owing to the linear structure of the molecular chains and the reversible hydrogen-bonding interactions between the chains, target elastomer can be conveniently healed and recycled under heating conditions. This research can provide a general and feasible strategy for the construction of elastomer materials with exceptional comprehensive properties, and the elastomers are expected to be applied in emerging fields such as protective elements and flexible electronics.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.