Ocean Coupling Limits Rupture Velocity of Fastest Observed Ice Shelf Rift Propagation Event

IF 8.3 Q1 GEOSCIENCES, MULTIDISCIPLINARY
AGU Advances Pub Date : 2024-02-05 DOI:10.1029/2023AV001023
Stephanie D. Olinger, Bradley P. Lipovsky, Marine A. Denolle
{"title":"Ocean Coupling Limits Rupture Velocity of Fastest Observed Ice Shelf Rift Propagation Event","authors":"Stephanie D. Olinger,&nbsp;Bradley P. Lipovsky,&nbsp;Marine A. Denolle","doi":"10.1029/2023AV001023","DOIUrl":null,"url":null,"abstract":"<p>The Antarctic ice sheet is buttressed by floating ice shelves that calve icebergs along large fractures called rifts. Despite the significant influence exerted by rifting on ice shelf geometry and buttressing, the scarcity of in situ observations of rift propagation contributes considerable uncertainty to understanding rift dynamics. Here, we report the first-ever seismic recording of a multiple-kilometer rift propagation event. Remote sensing and seismic recordings reveal that a rift in the Pine Island Glacier Ice Shelf extended 10.53 km at a speed of 35.1 m/s, the fastest known ice fracture at this scale. We simulate ocean-coupled rift propagation and find that the dynamics of water flow within the rift limit the propagation rate, resulting in rupture two orders of magnitude slower than typically predicted for brittle fracture. Using seismic recordings of the elastic waves generated during rift propagation, we estimate that ocean water flows into the rift at a rate of at least 2,300 m<sup>3</sup>/s during rift propagation and causes mixing in the subshelf cavity. Our observations support the hypotheses that large ice shelf rift propagation events are brittle, hydrodynamically limited, and exhibit sensitive coupling with the surrounding ocean.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"5 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023AV001023","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGU Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023AV001023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Antarctic ice sheet is buttressed by floating ice shelves that calve icebergs along large fractures called rifts. Despite the significant influence exerted by rifting on ice shelf geometry and buttressing, the scarcity of in situ observations of rift propagation contributes considerable uncertainty to understanding rift dynamics. Here, we report the first-ever seismic recording of a multiple-kilometer rift propagation event. Remote sensing and seismic recordings reveal that a rift in the Pine Island Glacier Ice Shelf extended 10.53 km at a speed of 35.1 m/s, the fastest known ice fracture at this scale. We simulate ocean-coupled rift propagation and find that the dynamics of water flow within the rift limit the propagation rate, resulting in rupture two orders of magnitude slower than typically predicted for brittle fracture. Using seismic recordings of the elastic waves generated during rift propagation, we estimate that ocean water flows into the rift at a rate of at least 2,300 m3/s during rift propagation and causes mixing in the subshelf cavity. Our observations support the hypotheses that large ice shelf rift propagation events are brittle, hydrodynamically limited, and exhibit sensitive coupling with the surrounding ocean.

Abstract Image

海洋耦合限制了观测到的最快冰架裂缝传播事件的破裂速度
南极冰盖由浮动冰架支撑,浮动冰架沿着被称为裂谷的大裂缝压积冰山。尽管断裂对冰架的几何形状和支撑产生了重大影响,但由于缺乏对断裂传播的现场观测,因此在了解断裂动力学方面存在很大的不确定性。在此,我们首次报告了多公里裂谷传播事件的地震记录。遥感和地震记录显示,松岛冰川冰架上的一条裂缝以 35.1 米/秒的速度延伸了 10.53 千米,这是已知这一尺度上最快的冰裂缝。我们模拟了海洋耦合裂缝的传播,发现裂缝内的水流动力学限制了传播速度,导致破裂的速度比通常预测的脆性断裂速度慢两个数量级。利用对裂谷传播过程中产生的弹性波的地震记录,我们估计在裂谷传播过程中,海水至少以每秒 2,300 立方米的速度流入裂谷,并在海底空腔中造成混合。我们的观测结果支持这样的假设,即大型冰架裂谷传播事件是脆性的、受流体力学限制的,并表现出与周围海洋的敏感耦合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信