{"title":"Composite Converter Combined APFC with Switched-capacitor Converter","authors":"Qing Fu;Yishan Chen;Yixing Su;Yang Hang","doi":"10.17775/CSEEJPES.2022.01980","DOIUrl":null,"url":null,"abstract":"To reduce switch numbers and voltage stress in semiconductor devices, this paper proposes a novel single-phase converter combined Active Power Factor Correction (APFC) with switched-capacitor converter. In addition, dynamic voltage regulation and voltage gain are improved by integrating the boost converter and switching capacitor cells. The interstage bulk capacitor is no longer needed. An average current control with redistribution of voltage in cells is proposed to obtain voltage lift ability of the switching capacitor cells and maintain a high-power factor. To study and verify the proposed converter preliminarily, theoretical analysis and simulation are presented in the paper. Furthermore, a 500 W prototype with two different configurations is built for experimental verification. The proposed converter can reach 95.62% of maximum efficiency, 0.99 of power factor, and 3.55% of THD with 600 V output voltage, simultaneously.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10165652","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSEE Journal of Power and Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10165652/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
To reduce switch numbers and voltage stress in semiconductor devices, this paper proposes a novel single-phase converter combined Active Power Factor Correction (APFC) with switched-capacitor converter. In addition, dynamic voltage regulation and voltage gain are improved by integrating the boost converter and switching capacitor cells. The interstage bulk capacitor is no longer needed. An average current control with redistribution of voltage in cells is proposed to obtain voltage lift ability of the switching capacitor cells and maintain a high-power factor. To study and verify the proposed converter preliminarily, theoretical analysis and simulation are presented in the paper. Furthermore, a 500 W prototype with two different configurations is built for experimental verification. The proposed converter can reach 95.62% of maximum efficiency, 0.99 of power factor, and 3.55% of THD with 600 V output voltage, simultaneously.
期刊介绍:
The CSEE Journal of Power and Energy Systems (JPES) is an international bimonthly journal published by the Chinese Society for Electrical Engineering (CSEE) in collaboration with CEPRI (China Electric Power Research Institute) and IEEE (The Institute of Electrical and Electronics Engineers) Inc. Indexed by SCI, Scopus, INSPEC, CSAD (Chinese Science Abstracts Database), DOAJ, and ProQuest, it serves as a platform for reporting cutting-edge theories, methods, technologies, and applications shaping the development of power systems in energy transition. The journal offers authors an international platform to enhance the reach and impact of their contributions.