{"title":"Characterizing Nanoparticle Isolated by Yam Bean (<i>Pachyrhizus erosus</i>) as a Potential Agent for Nanocosmetics: An <i>in vitro</i> and <i>in vivo</i> Approaches.","authors":"Maesa Ranggawati Kusnandar, Indra Wibowo, Anggraini Barlian","doi":"10.2174/0122117385279809231221050226","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study investigated the potential of Plant-Derived Exosome-Like Nanoparticles (PDENs) as cosmeceutical nanocarriers for treating skin problems, such as scar removal, face rejuvenation, anti-aging, and anti-pigmentation.</p><p><strong>Objectives: </strong>Researchers isolated PDENs from Yam Bean ((<i>Pachyrhizus erosus</i>) using PEG-based precipitation, gradual filtration, and various centrifugations at low temperatures. Followed by <i>in vitro</i> and <i>in vivo</i> studies using HDF cells and Zebrafish.</p><p><strong>Methods: </strong>The morphology of the YB-PDENs was determined using TEM analysis, they had a spherical shape with diameters of 236,83 ± 9,27 nm according to PSA. The study found that YB-PDENs were stable in aquabidest at 4°C for one month of storage and had ~-26,5 mV of Zeta Potential. The concentration of YB-PDENs was measured using the BCA Assay, and internalization of YB-PDENs to HDF cells was observed using a Confocal Laser Scanning Microscope labelled with PKH67.</p><p><strong>Results: </strong>As for cytotoxicity, after 24 and 72 hours of incubation with YB-PDENs, the viability of HDF cells remained more than 80%. The study also examined cell migration using the Scratch Assay and found that at 2,5 μg/mL, YB-PDENs had better migration results than other concentrations. Immunocytochemistry showed that collagen expression was higher after 14 days of incubation with YBPDENs, and melanocytes in zebrafish decreased at each concentration compared with controls.</p><p><strong>Conclusion: </strong>In conclusion, this study is the first to extract and describe PDEN s from Yam Bean ((<i>Pachyrhizus erosus</i>), with YB-PDENs having a promising anti-melanogenic effect in skin treatment. This study highlights the potential of YB-PDENs as a promising alternative to depigmentation and skin whitening treatments.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":"341-357"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122117385279809231221050226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Background: This study investigated the potential of Plant-Derived Exosome-Like Nanoparticles (PDENs) as cosmeceutical nanocarriers for treating skin problems, such as scar removal, face rejuvenation, anti-aging, and anti-pigmentation.
Objectives: Researchers isolated PDENs from Yam Bean ((Pachyrhizus erosus) using PEG-based precipitation, gradual filtration, and various centrifugations at low temperatures. Followed by in vitro and in vivo studies using HDF cells and Zebrafish.
Methods: The morphology of the YB-PDENs was determined using TEM analysis, they had a spherical shape with diameters of 236,83 ± 9,27 nm according to PSA. The study found that YB-PDENs were stable in aquabidest at 4°C for one month of storage and had ~-26,5 mV of Zeta Potential. The concentration of YB-PDENs was measured using the BCA Assay, and internalization of YB-PDENs to HDF cells was observed using a Confocal Laser Scanning Microscope labelled with PKH67.
Results: As for cytotoxicity, after 24 and 72 hours of incubation with YB-PDENs, the viability of HDF cells remained more than 80%. The study also examined cell migration using the Scratch Assay and found that at 2,5 μg/mL, YB-PDENs had better migration results than other concentrations. Immunocytochemistry showed that collagen expression was higher after 14 days of incubation with YBPDENs, and melanocytes in zebrafish decreased at each concentration compared with controls.
Conclusion: In conclusion, this study is the first to extract and describe PDEN s from Yam Bean ((Pachyrhizus erosus), with YB-PDENs having a promising anti-melanogenic effect in skin treatment. This study highlights the potential of YB-PDENs as a promising alternative to depigmentation and skin whitening treatments.
期刊介绍:
Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.