María Navarro-Pérez, Jesusa Capera, Anna Benavente-Garcia, Silvia Cassinelli, Magalí Colomer-Molera, Antonio Felipe
{"title":"Kv1.3 in the spotlight for treating immune diseases.","authors":"María Navarro-Pérez, Jesusa Capera, Anna Benavente-Garcia, Silvia Cassinelli, Magalí Colomer-Molera, Antonio Felipe","doi":"10.1080/14728222.2024.2315021","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Kv1.3 is the main voltage-gated potassium channel of leukocytes from both the innate and adaptive immune systems. Channel function is required for common processes such as Ca<sup>2+</sup> signaling but also for cell-specific events. In this context, alterations in Kv1.3 are associated with multiple immune disorders. Excessive channel activity correlates with numerous autoimmune diseases, while reduced currents result in increased cancer prevalence and immunodeficiencies.</p><p><strong>Areas covered: </strong>This review offers a general view of the role of Kv1.3 in every type of leukocyte. Moreover, diseases stemming from dysregulations of the channel are detailed, as well as current advances in their therapeutic research.</p><p><strong>Expert opinion: </strong>Kv1.3 arises as a potential immune target in a variety of diseases. Several lines of research focused on channel modulation have yielded positive results. However, among the great variety of specific channel blockers, only one has reached clinical trials. Future investigations should focus on developing simpler administration routes for channel inhibitors to facilitate their entrance into clinical trials. Prospective Kv1.3-based treatments will ensure powerful therapies while minimizing undesired side effects.</p>","PeriodicalId":12185,"journal":{"name":"Expert Opinion on Therapeutic Targets","volume":" ","pages":"67-82"},"PeriodicalIF":4.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Therapeutic Targets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14728222.2024.2315021","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Kv1.3 is the main voltage-gated potassium channel of leukocytes from both the innate and adaptive immune systems. Channel function is required for common processes such as Ca2+ signaling but also for cell-specific events. In this context, alterations in Kv1.3 are associated with multiple immune disorders. Excessive channel activity correlates with numerous autoimmune diseases, while reduced currents result in increased cancer prevalence and immunodeficiencies.
Areas covered: This review offers a general view of the role of Kv1.3 in every type of leukocyte. Moreover, diseases stemming from dysregulations of the channel are detailed, as well as current advances in their therapeutic research.
Expert opinion: Kv1.3 arises as a potential immune target in a variety of diseases. Several lines of research focused on channel modulation have yielded positive results. However, among the great variety of specific channel blockers, only one has reached clinical trials. Future investigations should focus on developing simpler administration routes for channel inhibitors to facilitate their entrance into clinical trials. Prospective Kv1.3-based treatments will ensure powerful therapies while minimizing undesired side effects.
期刊介绍:
The journal evaluates molecules, signalling pathways, receptors and other therapeutic targets and their potential as candidates for drug development. Articles in this journal focus on the molecular level and early preclinical studies. Articles should not include clinical information including specific drugs and clinical trials.
The Editors welcome:
Reviews covering novel disease targets at the molecular level and information on early preclinical studies and their implications for future drug development.
Articles should not include clinical information including specific drugs and clinical trials.
Original research papers reporting results of target selection and validation studies and basic mechanism of action studies for investigative and marketed drugs.
The audience consists of scientists, managers and decision makers in the pharmaceutical industry, academic researchers working in the field of molecular medicine and others closely involved in R&D.