Astrocyte Regulation of Cerebral Blood Flow in Health and Disease.

IF 6.9 2区 生物学 Q1 CELL BIOLOGY
Anusha Mishra, Grant R Gordon, Brian A MacVicar, Eric A Newman
{"title":"Astrocyte Regulation of Cerebral Blood Flow in Health and Disease.","authors":"Anusha Mishra, Grant R Gordon, Brian A MacVicar, Eric A Newman","doi":"10.1101/cshperspect.a041354","DOIUrl":null,"url":null,"abstract":"<p><p>Astrocytes play an important role in controlling microvascular diameter and regulating local cerebral blood flow (CBF) in several physiological and pathological scenarios. Neurotransmitters released from active neurons evoke Ca<sup>2+</sup> increases in astrocytes, leading to the release of vasoactive metabolites of arachidonic acid (AA) from astrocyte endfeet. Synthesis of prostaglandin E<sub>2</sub> (PGE<sub>2</sub>) and epoxyeicosatrienoic acids (EETs) dilate blood vessels while 20-hydroxyeicosatetraenoic acid (20-HETE) constricts vessels. The release of K<sup>+</sup> from astrocyte endfeet also contributes to vasodilation or constriction in a concentration-dependent manner. Whether astrocytes exert a vasodilation or vasoconstriction depends on the local microenvironment, including the metabolic status, the concentration of Ca<sup>2+</sup> reached in the endfoot, and the resting vascular tone. Astrocytes also contribute to the generation of steady-state vascular tone. Tonic release of both 20-HETE and ATP from astrocytes constricts vascular smooth muscle cells, generating vessel tone, whereas tone-dependent elevations in endfoot Ca<sup>2+</sup> produce tonic prostaglandin dilators to limit the degree of constriction. Under pathological conditions, including Alzheimer's disease, epilepsy, stroke, and diabetes, disruption of normal astrocyte physiology can compromise the regulation of blood flow, with negative consequences for neurological function.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982716/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor perspectives in biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/cshperspect.a041354","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Astrocytes play an important role in controlling microvascular diameter and regulating local cerebral blood flow (CBF) in several physiological and pathological scenarios. Neurotransmitters released from active neurons evoke Ca2+ increases in astrocytes, leading to the release of vasoactive metabolites of arachidonic acid (AA) from astrocyte endfeet. Synthesis of prostaglandin E2 (PGE2) and epoxyeicosatrienoic acids (EETs) dilate blood vessels while 20-hydroxyeicosatetraenoic acid (20-HETE) constricts vessels. The release of K+ from astrocyte endfeet also contributes to vasodilation or constriction in a concentration-dependent manner. Whether astrocytes exert a vasodilation or vasoconstriction depends on the local microenvironment, including the metabolic status, the concentration of Ca2+ reached in the endfoot, and the resting vascular tone. Astrocytes also contribute to the generation of steady-state vascular tone. Tonic release of both 20-HETE and ATP from astrocytes constricts vascular smooth muscle cells, generating vessel tone, whereas tone-dependent elevations in endfoot Ca2+ produce tonic prostaglandin dilators to limit the degree of constriction. Under pathological conditions, including Alzheimer's disease, epilepsy, stroke, and diabetes, disruption of normal astrocyte physiology can compromise the regulation of blood flow, with negative consequences for neurological function.

健康与疾病中星形胶质细胞对脑血流的调节
在多种生理和病理情况下,星形胶质细胞在控制微血管直径和调节局部脑血流量(CBF)方面发挥着重要作用。活跃神经元释放的神经递质会唤起星形胶质细胞中 Ca2+ 的增加,从而导致星形胶质细胞内膜释放血管活性代谢产物花生四烯酸(AA)。前列腺素 E2 (PGE2) 和环二十碳三烯酸 (EET) 的合成会扩张血管,而 20-hydroxyeicosatetraenoic acid (20-HETE) 则会收缩血管。星形胶质细胞内膜释放的 K+ 也会以浓度依赖的方式促进血管扩张或收缩。星形胶质细胞是扩张血管还是收缩血管取决于当地的微环境,包括代谢状态、内足达到的 Ca2+ 浓度以及静息血管张力。星形胶质细胞也有助于产生稳态血管张力。星形胶质细胞会有节奏地释放 20-HETE 和 ATP,使血管平滑肌细胞收缩,从而产生血管张力,而内足 Ca2+ 的张力依赖性升高会产生有节奏的前列腺素扩张剂,从而限制血管收缩的程度。在阿尔茨海默病、癫痫、中风和糖尿病等病理情况下,正常星形胶质细胞生理功能的破坏会影响血流调节,从而对神经功能产生负面影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.00
自引率
1.40%
发文量
56
审稿时长
3-8 weeks
期刊介绍: Cold Spring Harbor Perspectives in Biology offers a comprehensive platform in the molecular life sciences, featuring reviews that span molecular, cell, and developmental biology, genetics, neuroscience, immunology, cancer biology, and molecular pathology. This online publication provides in-depth insights into various topics, making it a valuable resource for those engaged in diverse aspects of biological research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信