{"title":"A posteriori error estimates for a dual finite element method for singularly perturbed reaction–diffusion problems","authors":"JaEun Ku, Martin Stynes","doi":"10.1007/s10543-024-01008-x","DOIUrl":null,"url":null,"abstract":"<p><i>A posteriori</i> error estimates are established for a two-step dual finite element method for singularly perturbed reaction–diffusion problems. The method can be considered as a modified least-squares finite element method. The least-squares functional is the basis for our residual-type a posteriori error estimators, which are shown to be reliable and efficient with respect to the error in an energy-type norm. Moreover, guaranteed upper bounds for the errors in the computed primary and dual variables are derived; these bounds are then used to drive an adaptive algorithm for our finite element method, yielding any desired accuracy. Our theory does not require the meshes generated to be shape-regular. Numerical experiments show the effectiveness of our a posteriori estimators.</p>","PeriodicalId":55351,"journal":{"name":"BIT Numerical Mathematics","volume":"11 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BIT Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10543-024-01008-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
A posteriori error estimates are established for a two-step dual finite element method for singularly perturbed reaction–diffusion problems. The method can be considered as a modified least-squares finite element method. The least-squares functional is the basis for our residual-type a posteriori error estimators, which are shown to be reliable and efficient with respect to the error in an energy-type norm. Moreover, guaranteed upper bounds for the errors in the computed primary and dual variables are derived; these bounds are then used to drive an adaptive algorithm for our finite element method, yielding any desired accuracy. Our theory does not require the meshes generated to be shape-regular. Numerical experiments show the effectiveness of our a posteriori estimators.
期刊介绍:
The journal BIT has been published since 1961. BIT publishes original research papers in the rapidly developing field of numerical analysis. The essential areas covered by BIT are development and analysis of numerical methods as well as the design and use of algorithms for scientific computing. Topics emphasized by BIT include numerical methods in approximation, linear algebra, and ordinary and partial differential equations.