{"title":"Costimulatory Molecule CD226 Regulates Atopic Dermatitis in a Mouse Model","authors":"","doi":"10.1016/j.jid.2024.01.022","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated the role of CD226 in a 2,4-dinitrochlorobenzene (DNCB)–induced mouse model of atopic dermatitis. The results showed that the lack of CD226 (global and CD4<sup>+</sup> T-cell specific) significantly increased ear thickness, reddening, swelling, and scaling of the skin as well as inflammatory cell and mast cell infiltration. RT-qPCR results demonstrated that the mRNA expressions of atopic dermatitis–related inflammatory cytokines and chemokines were markedly increased in the draining lymph nodes and lesioned ear skin tissues of global and CD4<sup>+</sup> T-cell–specific CD226-deficient mice compared with that in control mice. In vitro assessment revealed that CD226 directly modulates TGFβ-mediated regulatory T (Treg) cell differentiation and proliferation. Notably, Treg cell–specific deletion of CD226 (<em>Cd226</em><sup>fl/fl</sup><em>Foxp3</em><sup>cre</sup> mice) resulted in more severe dermatitis and epidermal thickening than those observed in littermate mice upon DNCB treatment. Subsequent analysis showed that the infiltration of Treg cells in ear lesions and the number of Tregs in the spleen were significantly reduced in <em>Cd226</em><sup>fl/fl</sup><em>Foxp3</em><sup>cre</sup> mice after DNCB treatment. In addition, the lack of CD226 induced apoptosis of Treg cells through the activation of caspase 3. Therefore, these results suggest that CD226 has potential efficacy in atopic dermatitis, correlating with Treg cell inhibition.</p></div>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022202X2400099X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the role of CD226 in a 2,4-dinitrochlorobenzene (DNCB)–induced mouse model of atopic dermatitis. The results showed that the lack of CD226 (global and CD4+ T-cell specific) significantly increased ear thickness, reddening, swelling, and scaling of the skin as well as inflammatory cell and mast cell infiltration. RT-qPCR results demonstrated that the mRNA expressions of atopic dermatitis–related inflammatory cytokines and chemokines were markedly increased in the draining lymph nodes and lesioned ear skin tissues of global and CD4+ T-cell–specific CD226-deficient mice compared with that in control mice. In vitro assessment revealed that CD226 directly modulates TGFβ-mediated regulatory T (Treg) cell differentiation and proliferation. Notably, Treg cell–specific deletion of CD226 (Cd226fl/flFoxp3cre mice) resulted in more severe dermatitis and epidermal thickening than those observed in littermate mice upon DNCB treatment. Subsequent analysis showed that the infiltration of Treg cells in ear lesions and the number of Tregs in the spleen were significantly reduced in Cd226fl/flFoxp3cre mice after DNCB treatment. In addition, the lack of CD226 induced apoptosis of Treg cells through the activation of caspase 3. Therefore, these results suggest that CD226 has potential efficacy in atopic dermatitis, correlating with Treg cell inhibition.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.