{"title":"Comparison of structural effects of cholesterol, lanosterol, and oxysterol on phospholipid (POPC) bilayers","authors":"Ayumi Okayama, Tatsuya Hoshino, Kohei Wada, Hiroshi Takahashi","doi":"10.1016/j.chemphyslip.2024.105376","DOIUrl":null,"url":null,"abstract":"<div><p>Membrane sterols contribute to the function of biomembranes by regulating the physical properties of the lipid bilayers. Cholesterol, a typical mammalian sterol, is biosynthesized by oxidation of lanosterol. From a molecular evolutionary perspective, lanosterol is considered the ancestral molecule of cholesterol. Here, we studied whether cholesterol is superior to lanosterol in regulating the physical properties of the lipid bilayer in terms of the structural effect on model biomembranes composed of a phospholipid. For comparison, oxysterol, which is formed by oxidation of cholesterol, was also studied. The phospholipid used was 1-palmitoyl-2-oleoyl-<em>sn</em>-glycero-3-phosphocholine (POPC), which is abundantly found in mammalian biomembranes, and 7β-hydroxycholesterol, which is highly cytotoxic, was used as the oxysterol. The apparent molecular volume was calculated from the mass density determined by the flotation method using H<sub>2</sub>O and D<sub>2</sub>O, and the bilayer thickness was determined by reconstructing the electron density distribution from X-ray diffraction data of the POPC/sterol mixtures at a sterol concentration of 30 mol%. The apparent occupied area at the bilayer surface was calculated from the above two structural data. The cholesterol system had the thickest bilayer thickness and the smallest occupied area of the three sterols studied here. This indicates that the POPC/cholesterol bilayer has a better barrier property than the other two systems. Compared to cholesterol, the effects of lanosterol and 7β-hydroxycholesterol on lipid bilayer properties can be interpreted as suboptimal for the function of mammalian biomembranes.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Physics of Lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000930842400001X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Membrane sterols contribute to the function of biomembranes by regulating the physical properties of the lipid bilayers. Cholesterol, a typical mammalian sterol, is biosynthesized by oxidation of lanosterol. From a molecular evolutionary perspective, lanosterol is considered the ancestral molecule of cholesterol. Here, we studied whether cholesterol is superior to lanosterol in regulating the physical properties of the lipid bilayer in terms of the structural effect on model biomembranes composed of a phospholipid. For comparison, oxysterol, which is formed by oxidation of cholesterol, was also studied. The phospholipid used was 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), which is abundantly found in mammalian biomembranes, and 7β-hydroxycholesterol, which is highly cytotoxic, was used as the oxysterol. The apparent molecular volume was calculated from the mass density determined by the flotation method using H2O and D2O, and the bilayer thickness was determined by reconstructing the electron density distribution from X-ray diffraction data of the POPC/sterol mixtures at a sterol concentration of 30 mol%. The apparent occupied area at the bilayer surface was calculated from the above two structural data. The cholesterol system had the thickest bilayer thickness and the smallest occupied area of the three sterols studied here. This indicates that the POPC/cholesterol bilayer has a better barrier property than the other two systems. Compared to cholesterol, the effects of lanosterol and 7β-hydroxycholesterol on lipid bilayer properties can be interpreted as suboptimal for the function of mammalian biomembranes.
期刊介绍:
Chemistry and Physics of Lipids publishes research papers and review articles on chemical and physical aspects of lipids with primary emphasis on the relationship of these properties to biological functions and to biomedical applications.
Accordingly, the journal covers: advances in synthetic and analytical lipid methodology; mass-spectrometry of lipids; chemical and physical characterisation of isolated structures; thermodynamics, phase behaviour, topology and dynamics of lipid assemblies; physicochemical studies into lipid-lipid and lipid-protein interactions in lipoproteins and in natural and model membranes; movement of lipids within, across and between membranes; intracellular lipid transfer; structure-function relationships and the nature of lipid-derived second messengers; chemical, physical and functional alterations of lipids induced by free radicals; enzymatic and non-enzymatic mechanisms of lipid peroxidation in cells, tissues, biofluids; oxidative lipidomics; and the role of lipids in the regulation of membrane-dependent biological processes.