{"title":"Micelle formation of sodium taurolithocholate","authors":"Keisuke Matsuoka , Rina Sekiguchi , Tomokazu Yoshimura","doi":"10.1016/j.chemphyslip.2024.105378","DOIUrl":null,"url":null,"abstract":"<div><p>The proportion of sodium taurolithocholate (NaTLC) is extremely low in human bile salts. NaTLC forms aggregates with other lipids in the bile and functions as an emulsifying and solubilizing agent. The molecular structure of NaTLC contains hydrophilic hydroxyl and sulfonic acid groups at both ends of the steroid ring. This molecular structure is similar to bolaform amphiphilic substance having hydrophilic groups at both ends due to the characteristics of its molecular structure. This study investigated the aggregate properties of the NaTLC using surface tension measurements, light scattering, small-angle X-ray scattering (SAXS), and cryo-transmission electron microscopy (cryo-TEM). Surface tension measurement showed that the surface tension of the NaTLC solution decreased to 54 mN m<sup>−1</sup>. The concentration that showed the minimum surface tension corresponded to the critical micelle concentration (CMC: 0.6 mmol L<sup>−1</sup>, 308 K) determined by the change in light scattering intensity. On the other hand, the degree of counterion (sodium ions) binding to the micelles increased with increasing NaTLC concentration. SAXS and cryo-TEM measurements showed that the NaTLC formed large string-like micelles. The surface activity and large aggregates showed the potential for use as biosurfactants. However, because of the relatively low solubility of NaTLC in water, its use as a biosurfactant is limited to a narrow concentration range.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"259 ","pages":"Article 105378"},"PeriodicalIF":3.4000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Physics of Lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009308424000033","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The proportion of sodium taurolithocholate (NaTLC) is extremely low in human bile salts. NaTLC forms aggregates with other lipids in the bile and functions as an emulsifying and solubilizing agent. The molecular structure of NaTLC contains hydrophilic hydroxyl and sulfonic acid groups at both ends of the steroid ring. This molecular structure is similar to bolaform amphiphilic substance having hydrophilic groups at both ends due to the characteristics of its molecular structure. This study investigated the aggregate properties of the NaTLC using surface tension measurements, light scattering, small-angle X-ray scattering (SAXS), and cryo-transmission electron microscopy (cryo-TEM). Surface tension measurement showed that the surface tension of the NaTLC solution decreased to 54 mN m−1. The concentration that showed the minimum surface tension corresponded to the critical micelle concentration (CMC: 0.6 mmol L−1, 308 K) determined by the change in light scattering intensity. On the other hand, the degree of counterion (sodium ions) binding to the micelles increased with increasing NaTLC concentration. SAXS and cryo-TEM measurements showed that the NaTLC formed large string-like micelles. The surface activity and large aggregates showed the potential for use as biosurfactants. However, because of the relatively low solubility of NaTLC in water, its use as a biosurfactant is limited to a narrow concentration range.
期刊介绍:
Chemistry and Physics of Lipids publishes research papers and review articles on chemical and physical aspects of lipids with primary emphasis on the relationship of these properties to biological functions and to biomedical applications.
Accordingly, the journal covers: advances in synthetic and analytical lipid methodology; mass-spectrometry of lipids; chemical and physical characterisation of isolated structures; thermodynamics, phase behaviour, topology and dynamics of lipid assemblies; physicochemical studies into lipid-lipid and lipid-protein interactions in lipoproteins and in natural and model membranes; movement of lipids within, across and between membranes; intracellular lipid transfer; structure-function relationships and the nature of lipid-derived second messengers; chemical, physical and functional alterations of lipids induced by free radicals; enzymatic and non-enzymatic mechanisms of lipid peroxidation in cells, tissues, biofluids; oxidative lipidomics; and the role of lipids in the regulation of membrane-dependent biological processes.