Programmed Targeting Pyruvate Metabolism Therapy Amplified Single-Atom Nanozyme-Activated Pyroptosis for Immunotherapy

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Rui Niu, Yang Liu, Bo Xu, Ruiping Deng, Shijie Zhou, Yue Cao, Wanying Li, Hao Zhang, Haiyang Zheng, Shuyan Song, Yinghui Wang, Hongjie Zhang
{"title":"Programmed Targeting Pyruvate Metabolism Therapy Amplified Single-Atom Nanozyme-Activated Pyroptosis for Immunotherapy","authors":"Rui Niu,&nbsp;Yang Liu,&nbsp;Bo Xu,&nbsp;Ruiping Deng,&nbsp;Shijie Zhou,&nbsp;Yue Cao,&nbsp;Wanying Li,&nbsp;Hao Zhang,&nbsp;Haiyang Zheng,&nbsp;Shuyan Song,&nbsp;Yinghui Wang,&nbsp;Hongjie Zhang","doi":"10.1002/adma.202312124","DOIUrl":null,"url":null,"abstract":"<p>Increasing cellular immunogenicity and reshaping the immune tumor microenvironment (TME) are crucial for antitumor immunotherapy. Herein, this work develops a novel single-atom nanozyme pyroptosis initiator: UK5099 and pyruvate oxidase (POx)-co-loaded Cu-NS single-atom nanozyme (Cu-NS@UK@POx), that not only trigger pyroptosis through cascade biocatalysis to boost the immunogenicity of tumor cells, but also remodel the immunosuppressive TME by targeting pyruvate metabolism. By replacing N with weakly electronegative S, the original spatial symmetry of the Cu-N<sub>4</sub> electron distribution is changed and the enzyme-catalyzed process is effectively regulated. Compared to spatially symmetric Cu-N<sub>4</sub> single-atom nanozymes (Cu-N<sub>4</sub> SA), the S-doped spatially asymmetric single-atom nanozymes (Cu-NS SA) exhibit stronger oxidase activities, including peroxidase (POD), nicotinamide adenine dinucleotide (NADH) oxidase (NOx), <span>L</span>-cysteine oxidase (LCO), and glutathione oxidase (GSHOx), which can cause enough reactive oxygen species (ROS) storms to trigger pyroptosis. Moreover, the synergistic effect of Cu-NS SA, UK5099, and POx can target pyruvate metabolism, which not only improves the immune TME but also increases the degree of pyroptosis. This study provides a two-pronged treatment strategy that can significantly activate antitumor immunotherapy effects via ROS storms, NADH/glutathione/<span>L</span>-cysteine consumption, pyruvate oxidation, and lactic acid (LA)/ATP depletion, triggering pyroptosis and regulating metabolism. This work provides a broad vision for expanding antitumor immunotherapy.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202312124","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Increasing cellular immunogenicity and reshaping the immune tumor microenvironment (TME) are crucial for antitumor immunotherapy. Herein, this work develops a novel single-atom nanozyme pyroptosis initiator: UK5099 and pyruvate oxidase (POx)-co-loaded Cu-NS single-atom nanozyme (Cu-NS@UK@POx), that not only trigger pyroptosis through cascade biocatalysis to boost the immunogenicity of tumor cells, but also remodel the immunosuppressive TME by targeting pyruvate metabolism. By replacing N with weakly electronegative S, the original spatial symmetry of the Cu-N4 electron distribution is changed and the enzyme-catalyzed process is effectively regulated. Compared to spatially symmetric Cu-N4 single-atom nanozymes (Cu-N4 SA), the S-doped spatially asymmetric single-atom nanozymes (Cu-NS SA) exhibit stronger oxidase activities, including peroxidase (POD), nicotinamide adenine dinucleotide (NADH) oxidase (NOx), L-cysteine oxidase (LCO), and glutathione oxidase (GSHOx), which can cause enough reactive oxygen species (ROS) storms to trigger pyroptosis. Moreover, the synergistic effect of Cu-NS SA, UK5099, and POx can target pyruvate metabolism, which not only improves the immune TME but also increases the degree of pyroptosis. This study provides a two-pronged treatment strategy that can significantly activate antitumor immunotherapy effects via ROS storms, NADH/glutathione/L-cysteine consumption, pyruvate oxidation, and lactic acid (LA)/ATP depletion, triggering pyroptosis and regulating metabolism. This work provides a broad vision for expanding antitumor immunotherapy.

Abstract Image

程序化靶向丙酮酸代谢疗法--用于免疫疗法的放大单原子纳米酶激活焦磷酸代谢
提高细胞免疫原性和重塑免疫肿瘤微环境(TME)对抗肿瘤免疫疗法至关重要。在此,我们开发了一种新型的单原子纳米酶热核酸引发剂:UK5099和丙酮酸氧化酶(POx)共同负载的Cu-NS单原子纳米酶(Cu-NS@UK@POx),不仅能通过级联生物催化引发热蛋白沉积,提高肿瘤细胞的免疫原性,还能通过靶向丙酮酸代谢重塑免疫抑制性TME。通过用弱电负性的 S 取代 N,我们改变了 Cu-N4 电子分布原有的空间对称性,有效地调节了酶催化过程。与空间对称的 Cu-N4 单原子纳米酶(Cu-N4 SA)相比,掺杂 S 的空间不对称单原子纳米酶(Cu-NS SA)表现出更强的氧化酶活性,包括过氧化物酶(POD)、过氧化物酶(POD)、烟酰胺腺嘌呤二核苷酸(NADH)氧化酶(NOx)、L-半胱氨酸氧化酶(LCO)和谷胱甘肽氧化酶(GSHOx)。此外,Cu-NS SA、UK5099 和 POx 的协同作用可以靶向丙酮酸代谢,这不仅能改善免疫 TME,还能增加热蛋白沉积的程度。该研究提供了一种双管齐下的治疗策略,可通过ROS风暴、NADH/谷胱甘肽/L-半胱氨酸消耗、丙酮酸氧化和乳酸/ATP耗竭,显著激活抗肿瘤免疫治疗效果,引发嗜热症并调节新陈代谢。这项工作为扩大抗肿瘤免疫疗法提供了广阔的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信