Developing a remote gamma-ray spectra collection system (RGSCS) by coupling a high purity Germanium (HPGe) detector with a cosmicguard background reduction device
{"title":"Developing a remote gamma-ray spectra collection system (RGSCS) by coupling a high purity Germanium (HPGe) detector with a cosmicguard background reduction device","authors":"Zaijing Sun, Krishnakumar Divakar Nangeelil, Haven Searcy","doi":"10.1016/j.ohx.2024.e00513","DOIUrl":null,"url":null,"abstract":"<div><p>Despite being widely used for high-resolution spectral analysis and quantifying low activity in natural samples, the operations and data analysis of High Purity Germanium (HPGe) gamma-ray detectors are seldom fully automated due to the excessive costs associated with commercially available automatic sample changing systems. This paper introduces the design and implementation of a cost-effective, customized remote gamma-ray spectra collection system centered around the HPGe detector coupled to a cosmic-ray veto background reduction device. The HPGe detector system, equipped with a Lynx DSA, is seamlessly integrated with an economically viable automatic sample changer. This sample vial changer is controlled by a high-torque NEMA 34 stepper servo motor from Vention. Web control of the rotary actuator is facilitated through a CAD-based programming tool. The remote-controlled sample pick-and-place procedure is executed using a robotic arm (Trossen Robotics, Viper X 250). The DYNAMIXEL servomotors of the robotic arm are programmed using Python software supported by the Robotic Operating System. Beyond its technical construction, this system is uniquely fashioned for academic research, providing invaluable hands-on experience in gamma spectrometry to both junior researchers and students.</p></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468067224000075/pdfft?md5=61b3d74d0f4d9327a85dbbddb40590ea&pid=1-s2.0-S2468067224000075-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067224000075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Despite being widely used for high-resolution spectral analysis and quantifying low activity in natural samples, the operations and data analysis of High Purity Germanium (HPGe) gamma-ray detectors are seldom fully automated due to the excessive costs associated with commercially available automatic sample changing systems. This paper introduces the design and implementation of a cost-effective, customized remote gamma-ray spectra collection system centered around the HPGe detector coupled to a cosmic-ray veto background reduction device. The HPGe detector system, equipped with a Lynx DSA, is seamlessly integrated with an economically viable automatic sample changer. This sample vial changer is controlled by a high-torque NEMA 34 stepper servo motor from Vention. Web control of the rotary actuator is facilitated through a CAD-based programming tool. The remote-controlled sample pick-and-place procedure is executed using a robotic arm (Trossen Robotics, Viper X 250). The DYNAMIXEL servomotors of the robotic arm are programmed using Python software supported by the Robotic Operating System. Beyond its technical construction, this system is uniquely fashioned for academic research, providing invaluable hands-on experience in gamma spectrometry to both junior researchers and students.
HardwareXEngineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍:
HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.